33 research outputs found

    Enriching Peptide Libraries for Binding Affinity and Specificity Through Computationally Directed Library Design

    Get PDF
    Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model.National Institute of General Medical Sciences (U.S.) (Award R01 GM110048

    A domino ring-opening/epoxidation of 1,2-dioxines

    No full text
    Copyright © 2004 American Chemical SocietyWhen allowed to react with alkaline hydrogen peroxide, monocyclic 1,2-dioxines ring-open to their isomeric -hydroxyenone intermediates which are rapidly epoxidized to afford trans-4-hydroxy-2,3-epoxyketones in 21-81% yield. In the case of meso-1,2-dioxines, Co(II) complex catalyzed asymmetric ring-opening of the 1,2-dioxine may be employed to furnish enantioenriched epoxide
    corecore