50 research outputs found

    Impact of spatial aliasing on sea-ice thickness measurements

    Get PDF
    We explore spatial aliasing of non-Gaussian distributions of sea-ice thickness. Using a heuristic model and \u3e1000 measurements, we show how different instrument footprint sizes and shapes can cluster thickness distributions into artificial modes, thereby distorting frequency distribution, making it difficult to compare and communicate information across spatial scales. This problem has not been dealt with systematically in sea ice until now, largely because it appears to incur no significant change in integrated thickness which often serves as a volume proxy. Concomitantly, demands are increasing for thickness distribution as a resource for modeling, monitoring and forecasting air–sea fluxes and growing human infrastructure needs in a changing polar environment. New demands include the characterization of uncertainties both regionally and seasonally for spaceborne, airborne, in situ and underwater measurements. To serve these growing needs, we quantify the impact of spatial aliasing by computing resolution error (Er) over a range of horizontal scales (x) from 5 to 500 m. Results are summarized through a power law (Er = bxm) with distinct exponents (m) from 0.3 to 0.5 using example mathematical functions including Gaussian, inverse linear and running mean filters. Recommendations and visualizations are provided to encourage discussion, new data acquisitions, analysis methods and metadata formats

    Impact of spatial aliasing on sea-ice thickness measurements

    Get PDF
    We explore spatial aliasing of non-Gaussian distributions of sea-ice thickness. Using a heuristic model and \u3e1000 measurements, we show how different instrument footprint sizes and shapes can cluster thickness distributions into artificial modes, thereby distorting frequency distribution, making it difficult to compare and communicate information across spatial scales. This problem has not been dealt with systematically in sea ice until now, largely because it appears to incur no significant change in integrated thickness which often serves as a volume proxy. Concomitantly, demands are increasing for thickness distribution as a resource for modeling, monitoring and forecasting air–sea fluxes and growing human infrastructure needs in a changing polar environment. New demands include the characterization of uncertainties both regionally and seasonally for spaceborne, airborne, in situ and underwater measurements. To serve these growing needs, we quantify the impact of spatial aliasing by computing resolution error (Er) over a range of horizontal scales (x) from 5 to 500 m. Results are summarized through a power law (Er = bxm) with distinct exponents (m) from 0.3 to 0.5 using example mathematical functions including Gaussian, inverse linear and running mean filters. Recommendations and visualizations are provided to encourage discussion, new data acquisitions, analysis methods and metadata formats

    Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines

    Get PDF
    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests

    Evaluation of the effects of antibiotics on cytotoxicity of EGFP and DsRed2 fluorescent proteins used for stable cell labeling

    No full text
    The use of fluorescent markers has proven to be an attractive tool in biological imaging. However, its usefulness may be confined by the cytotoxicity of the fluorescent proteins. In this article, for the first time, we have examined an influence of the antibiotics present in culture medium on cytotoxicity of the EGFP and DsRed2 markers used for whole-cell labeling. Results showed that doxycycline negatively affected albumin synthesis in DsRed2-expressing hepatoma cells, and that both hepatoma cells and human skin fibroblasts, labeled with this protein, were characterized by the lowered growth rates. Thus, the cytotoxic effect of fluorescent markers depends on both protein used for cell labeling and on growth conditions that may cause cell stress

    Full-physics 3-D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    No full text
    Publisher's PDFIn this paper we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell’s equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water as a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as ‘null lines’. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.University of Delaware. Department of Geography.University of Delaware. Department of Electrical and Computer Engineering

    Identification of a ferritin-like protein of <it>Listeria monocytogenes</it> as a mediator of β-lactam tolerance and innate resistance to cephalosporins

    No full text
    Abstract Background The food-borne pathogen Listeria monocytogenes is the causative agent of listeriosis. The β-lactam antibiotics penicillin G and ampicillin are the current drugs of choice for the treatment of listerial infections. While isolates of L. monocytogenes are susceptible to these antibiotics, their action is only bacteriostatic and consequently, this bacterium is regarded as tolerant to β-lactams. In addition, L. monocytogenes has a high level of innate resistance to the cephalosporin family of β-lactams frequently used to treat sepsis of unknown etiology. Given the high mortality rate of listeriosis despite rational antibiotic therapy, it is important to identify genes that play a role in the susceptibility and tolerance of L. monocytogenes to β-lactams. Results The hly-based promoter trap system was applied to identify penicillin G-inducible genes of L. monocytogenes. The results of reporter system studies, verified by transcriptional analysis, identified ten penicillin G-inducible genes. The contribution of three of these genes, encoding a ferritin-like protein (fri), a two-component phosphate-response regulator (phoP) and an AraC/XylS family transcriptional regulator (axyR), to the susceptibility and tolerance of L. monocytogenes to β-lactams was examined by analysis of nonpolar deletion mutants. The absence of PhoP or AxyR resulted in more rapid growth of the strains in the presence of sublethal concentration of β-lactams, but had no effect on the MIC values or the ability to survive a lethal dose of these antibiotics. However, the Δfri strain showed impaired growth in the presence of sublethal concentrations of penicillin G and ampicillin and a significantly reduced ability to survive lethal concentrations of these β-lactams. A lack of Fri also caused a 2-fold increase in the sensitivity of L. monocytogenes to cefalotin and cephradine. Conclusions The present study has identified Fri as an important mediator of β-lactam tolerance and innate resistance to cephalosporins in L. monocytogenes. PhoP and AxyR are probably involved in transmitting signals to adjust the rate of growth of L. monocytogenes under β-lactam pressure, but these regulators do not play a significant role in susceptibility and tolerance to this class of antibiotics.</p

    Caveolin-1--a novel interacting partner of organic cation/carnitine transporter (Octn2): effect of protein kinase C on this interaction in rat astrocytes.

    Get PDF
    OCTN2--the Organic Cation Transporter Novel family member 2 (SLC22A5) is known to be a xenobiotic/drug transporter. It transports as well carnitine--a compound necessary for oxidation of fatty acids and mutations of its gene cause primary carnitine deficiency. Octn2 regulation by protein kinase C (PKC) was studied in rat astrocytes--cells in which β-oxidation takes place in the brain. Activation of PKC with phorbol ester stimulated L-carnitine transport and increased cell surface presence of the transporter, although no PKC-specific phosphorylation of Octn2 could be detected. PKC activation resulted in an augmented Octn2 presence in cholesterol/sphingolipid-rich microdomains of plasma membrane (rafts) and increased co-precipitation of Octn2 with raft-proteins, caveolin-1 and flotillin-1. Deletion of potential caveolin-1 binding motifs pointed to amino acids 14-22 and 447-454 as the caveolin-1 binding sites within Octn2 sequence. A direct interaction of Octn2 with caveolin-1 in astrocytes upon PKC activation was detected by proximity ligation assay, while such an interaction was excluded in case of flotillin-1. Functioning of a multi-protein complex regulated by PKC has been postulated in rOctn2 trafficking to the cell surface, a process which could be important both under physiological conditions, when carnitine facilitates fatty acids catabolism and controls free Coenzyme A pool as well as in pathology, when transport of several drugs can induce secondary carnitine deficiency

    Influence of risky and protective behaviors connected with listening to music on hearing loss and the noise induced threshold shift among students of the Medical University of Bialystok

    No full text
    Background . Currently, significant changes have occurred in the character of sound exposure, along with the properties of the group affected by it. Thus, primary care physicians have to keep in mind that a sizable group of young adults comprises groups in which the prevalence of hearing loss is increasing. Objectives . The goal of the following study was to determine the auditory ability of the students attending the Medical University in Bialystok and to analyze their risky and protective behaviors relating to music consumption. Material and methods . In total, 230 students (age: 18–26 years) completed a questionnaire about general personal information and their music-listening habits. Thereafter, pure tone audiometry at standard frequencies (0.25 kHz–8 kHz) was performed. Results . Hearing loss was more frequent in subjects who listened to music at higher volumes (‘very loud’ – 22.2%, ‘loud’ – 3.9%, ‘not very loud’ – 2.1%, ‘quiet’ – 9.1%, p = 0.046). Hearing loss was more prevalent among those students who were living in a city with more than 50,000 inhabitants before starting higher education compared to the remaining subjects (7.95% vs. 0.97%, p = 0.025). Conclusions . The study demonstrated that surprisingly few medical students suffer from hearing loss or a noise induced threshold shift. There is no correlation between risky behavior such as a lengthy daily duration of listening to music or the type of headphone used and hearing loss. Hearing screening tests connected with education are indicated in the group of young adults due to the accumulative character of hearing damage

    Dried human skin fibroblasts as a new substratum for functional culture of hepatic cells

    No full text
    The primary hepatocytes culture is still one of the main challenges in toxicology studies in the drug discovery process, development of in vitro models to study liver function, and cell-based therapies. Isolated hepatocytes display a rapid decline in viability and liver-specific functions including albumin production, conversion of ammonia to urea, and activity of the drug metabolizing enzymes. A number of methods have been developed in order to maintain hepatocytes in their highly differentiated state in vitro. Optimization of culture conditions includes a variety of media formulations and supplements, growth surface coating with the components of extracellular matrix or with synthetic polymers, three-dimensional growth scaffolds and decellularized tissues, and coculture with other cell types required for the normal cell-cell interactions. Here we propose a new substratum for hepatic cells made by drying confluent human skin fibroblasts' culture. This growth surface coating, prepared using maximally simplified procedure, combines the advantages of the use of extracellular matrices and growth factors/cytokines secreted by the feeder layer cells. In comparison to the hepatoma cells grown on a regular tissue culture plastic, cells cultured on the dried fibroblasts were able to synthesize albumin in larger quantities and to form greater number of apical vacuoles. Unlike the coculture with the living feeder layer cells, the number of cells grown on the new substratum was not reduced after fourteen days of culture. This fact could make the dried fibroblasts coating an ideal candidate for the substrate for non-dividing human hepatocytes

    A polarized localization of amino acid/carnitine transporter B<SUP>0,+</SUP> (ATB<SUP>0,+</SUP>) in the blood-brain barrier

    No full text
    International audienceBrain capillary endothelial cells control the uptake and efflux from the brain of many hydrophilic compounds due to highly specialized transporters often localized in a polarized way. Localization of Na+- and Cl--dependent amino acid and carnitine transporter B0,+ (ATB0,+) was studied in a co-culture of bovine brain capillary endothelial cells (BBCEC) grown on filters above astrocytes (an in vitro blood-brain barrier model). Immunoblotting and three-dimensional immunocytochemistry analysis with anti- B0,+antibodies demonstrated the presence of this transporter and its prevalent co-localization with P-glycoprotein i.e. at the apical side. The sensitivity of leucine uptake through the apical membrane to 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid (BCH), D-serine as well as sodium and chloride replacement confirm the functioning of ATB0,+ and suggests an important physiological role of ATB0,+ in controlling the delivery of amino acids and carnitine to the brain
    corecore