8 research outputs found

    Dichloromethane and Methanol Extracts of Scrophularia oxysepala Induces Apoptosis in MCF-7 Human Breast Cancer Cells

    No full text
    Purpose: Breast cancer is the most common cause of cancer-related death in women worldwide. Therefore, there is an urgent need to identify and develop therapeutic strategies against this deadly disease. This study is the first to investigate the cytotoxic effects and the mechanism of cell death of Scrophularia oxysepala extracts in MCF-7 human breast cancer cells. Methods: Three extracts of Scrophularia oxysepala including the n-hexane, dichloromethane and methanol extracts were examined. MTT (3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Trypan-blue assays were performed in MCF-7 cells as well as Human umbilical vein endothelial cells (HUVEC) to analyze the cytotoxic activity of the extracts of Scrophularia oxysepala. Further, the apoptosis inducing action of the extracts was determined by TUNEL (terminal deoxy transferase (TdT)-mediated dUTP nick- end labeling) test and cell death assay. Results: The results showed that the n-hexane extract had no cytotoxic effects but dichloromethane and methanol extracts significantly inhibited cell growth and viability in a dose and time dependent manner without inducing damage to non-cancerous cell line HUVEC. In addition, Cell death assay and DNA fragmentation analysis using TUNEL indicated induction of apoptosis by dichloromethane and methanol extracts of Scrophularia oxysepala in MCF-7 cells. Conclusion: Our studies suggest that this plant may contain potential bioactive compound(s) for the treatment of breast cancer

    Expression, Purification and Functional Assessment of Smallest Isoform of Human Interleukin-24 in Escherichia coli

    No full text
    ABSTRACT Interleukin-24 (IL-24) is a novel tumor-suppressor gene that has different alternative splice isoforms. It has been shown that new smallest isoform of human IL-24 gene, lacking three exons, induces higher levels of cytotoxicity than all the isoforms, indicating shortest isoform of IL-24 may be a new promising anti-cancer agent. In this study, we aimed to provide a reproducible method for recombinant production of the smallest isoform of IL-24 (sIL-24). The Structure of sIL-24 was analyzed using bioinformatics tools (I-TASSER, Prosa, RAMPAGE and SPDBV version 4.1). The DNA sequence encoding sIL-24 was chemically synthesized and sub-cloned into the pET-32a (+) vector for further protein expression in Escherichia coli BL21 (DE3) strain. Upon IPTG induction, sIL-24 peptide was expressed as a thioredoxin fusion protein. The recombinant sIL-24 was released from the fusion by TEV protease cleavage followed by nickel affinity chromatography. The yield of the purified sIL-24 was estimated about 380 μg/ml. MTT assay showed that sIL-24 peptide inhibited the proliferation of PC-3 cancer cells more effectively than full length IL-24 protein, while none affect the survival of MRC-5 normal cells. These results indicate that the presented expression system is an efficient system for the production of small functional recombinant sIL-24 peptide.This functional peptide may have cancer therapeutic application

    Inhibition of Growth and Induction of Apoptosis in Fibrosarcoma Cell Lines by Echinophora platyloba DC: In Vitro Analysis

    Get PDF
    Echinophora platyloba DC plant (Khousharizeh) is one of the indigenous medicinal plants which is used as a food seasoning and medicine in Iran. The objective of this study was to examine the in vitro cytotoxic activity and the mechanism of cell death of crude methanolic extracts prepared from Echinophora platyloba DC, on mouse fibrosarcoma cell line (WEHI-164). Cytotoxicity and viability of methanolic extract was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dye exclusion assay. Cell death ELISA was employed to quantify the nucleosome production result from nuclear DNA fragmentation during apoptosis and determine whether the mechanism involves induction of apoptosis or necrosis. The cell death was identified as apoptosis using terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP nick end labeling (TUNEL) assay. Our results demonstrated that the extract decreased cell viability, suppressed cell proliferation, and induced cell death in a time- and dose-dependent manner in WEHI-164 cells (IC50 = 196.673 ± 12.4 μg/mL) when compared with a chemotherapeutic anticancer drug, Toxol. Observation proved that apoptosis was the major mechanism of cell death. So the Echinophora platyloba DC extract was found to time- and dose-dependently inhibit the proliferation of fibrosarcoma cell possibly via an apoptosis-dependent pathway

    Inhibitory and Cytotoxic Activities of Salvia Officinalis L. Extract on Human Lymphoma and Leukemia Cells by Induction of Apoptosis

    No full text
    Purpose: Salvia officinalis L., also known as Maryam Goli, is one of the native plants used to Persian medicinal herbs. Hence, the objective of this study was to examine the in vitro cytotoxic activities of a standardized crude methanol extracts prepared from Salvia officinalis L., on a non-Hodgkin’s B-cell lymphoma (Raji) and human leukemic monocyte lymphoma (U937), Human acute myelocytic leukemia (KG-1A) and Human Umbilical Vein Endothelial (HUVEC) cell lines. Methods: The effect of methanolic extract on the inhibition of cell proliferation and cytotoxic activity was evaluated by Dye exclusion and Micro culture tetrazolium test (MTT) cytotoxicity assay. Cell death ELISA was employed to quantify the nucleosome production result from nuclear DNA fragmentation during apoptosis and determined whether the mechanism involves induction of apoptosis or necrosis. Results: The present results demonstrated that methanolic extract at 50 to 800 μg/ml dose and time-dependently suppressed the proliferation of KG-1A, U937 and Raji cells by more than 80% (p800 Ag/ml). Nucleosome productions in KG-1A, Raji and U937 cells were significantly increased respectively upon the treatment of Salvia officinalis L. extract. Conclusion: The Salvia officinalis L. extract was found dose and time-dependently inhibits the proliferation of lymphoma and leukemic cells possibly via an apoptosis-dependent pathway

    Methanolic Fractions of Ornithogalum cuspidatum Induce Apoptosis in PC-3 Prostate Cancer Cell Line and WEHI-164 Fibrosarcoma Cancer Cell Line

    No full text
    Purpose: The present study, was aimed to assess the cytotoxic effects of Ornithogalum cuspidatum methanolic fractions on PC-3, prostate cancer cells and WEHI-164, Fibrosarcoma cells. Methods: Methanolic fractions of O. cuspidatum were prepared using solid phase extraction and the cells were treated with different concentrations for 12 and 24 hours. Cytotoxicity and cell viability were measured by MTT assay. ELISA was also employed to assess the histone-associated DNA fragments and the involvement of apoptotic mechanisms. Results: 10 and 20% fractions had not significant cytotoxic effects (p>0.05) but other fractions exerted growth inhibition on both cancer cell lines (p<0.05). After 24h of incubation with 40, 60, 80 and 100% fractions, the IC50 values were: 165, 85, 65 and 45μg/ml on PC-3 cells and 200, 96, 76 and 73μg/ml against WEHI-164 cell line, respectively. ELISA results also revealed that, both cell lines had undergone apoptosis. Conclusion: It is deduced that, 80% and 100% methanolic fractions had significant anti-proliferative and apoptotic impacts on PC-3 and WEHI-164 cells in vitro and could be considered for developing chemo-preventive substances
    corecore