8 research outputs found

    Genetic predisposition to nonalcoholic fatty liver disease: insights from ANGPTL8 gene variants in Iranian adults

    No full text
    Abstract Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease with a global prevalence, and modulation of ANGPTL8 expression has emerged as a promising predictor of NAFLD susceptibility. This research was conducted to scrutinize ANGPTL8 protein expression in NAFLD patients and elucidate the interplay between ANGPTL8 gene polymorphisms and their lipid profiles, thus shedding new light on the pathophysiology of this complex disease. The study comprised 423 unrelated participants, including 222 healthy controls and 201 individuals with NAFLD, screened using FibroScan/ultrasonography and laboratory tests. The main goal focused on the genotype and allele frequency distribution in the ANGPTL8 gene, specifically analyzing two genetic variations: rs737337 (T/C) and rs2278426 (C/T). The participants diagnosed with NAFLD were slightly younger (P ≥ 0.05) and had a higher body mass index (BMI) than the individuals in the control group. Notably, there was a significant difference in the occurrence of the rs737337 polymorphism between the NAFLD and control groups, with a lower frequency observed in the NAFLD group. Our results indicated that individuals with the TC + CC genotype and C allele of rs737337 (T/C) had a decreased risk of higher levels of ALT and AST. Conversely, those with the CT, CT + TT genotype, and T allele of rs2278426 (C/T) exhibited an increased risk of higher levels of ALT and AST. The results imply that the rs2278426 (C/T) variant of the ANGPTL8 gene is more strongly linked to an increased risk of NAFLD compared to the rs737337 polymorphism. However, additional research is needed to understand the specific molecular mechanisms responsible for the upregulation of ANGPTL8 in individuals with NAFLD

    Holistic exploration of CHGA and hsa-miR-137 in colorectal cancer via multi-omic data Integration

    No full text
    Colorectal cancer (CRC) ranks among the most widespread malignancies globally, with early detection significantly influencing prognosis. Employing a systems biology approach, we aimed to unravel the intricate mRNA-miRNA network linked to CRC pathogenesis, potentially yielding diagnostic biomarkers. Through an integrative analysis of microarray, Bulk RNA-seq, and single-cell RNA-seq data, we explored CRC-related transcriptomes comprehensively. Differential gene expression analysis uncovered crucial genes, while Weighted Gene Co-expression Network Analysis (WGCNA) identified key modules closely linked to CRC. Remarkably, CRC manifested its strongest correlation with the turquoise module, signifying its pivotal role. From the cohort of genes showing high Gene Significance (GS) and Module Membership (MM), and Differential Expression Genes (DEGs), we highlighted the downregulated Chromogranin A (CHGA) as a notable hub gene in CRC. This finding was corroborated by the Human Protein Atlas database, which illustrated decreased CHGA expression in CRC tissues. Additionally, CHGA displayed elevated expression in primary versus metastatic cell lines, as evidenced by the CCLE database. Subsequent RT-qPCR validation substantiated the marked downregulation of CHGA in CRC tissues, reinforcing the significance of our differential expression analysis. Analyzing the Space-Time Gut Cell Atlas dataset underscored specific CHGA expression in epithelial cell subclusters, a trend persisting across developmental stages. Furthermore, our scrutiny of colon and small intestine Enteroendocrine cells uncovered distinct CHGA expression patterns, accentuating its role in CRC pathogenesis. Utilizing the WGCNA algorithm and TargetScan database, we validated the downregulation of hsa-miR-137 in CRC, and integrated assessment highlighted its interplay with CHGA. Our findings advocate hsa-miR-137 and CHGA as promising CRC biomarkers, offering valuable insights into diagnosis and prognosis. Despite proteomic analysis yielding no direct correlation, our multifaceted approach contributes comprehensive understanding of CRC's intricate regulatory mechanisms. In conclusion, this study advances hsa-miR-137 and CHGA as promising CRC biomarkers through an integrated analysis of diverse datasets and network interactions

    Deciphering the immune landscape of head and neck squamous cell carcinoma: A single-cell transcriptomic analysis of regulatory T cell responses to PD-1 blockade therapy

    No full text
    : Immunotherapy is changing the Head and Neck Squamous Cell Carcinoma (HNSCC) landscape and improving outcomes for patients with recurrent or metastatic HNSCC. A deeper understanding of the tumor microenvironment (TME) is required in light of the limitations of patients' responses to immunotherapy. Here, we aimed to examine how Nivolumab affects infiltrating Tregs in the HNSCC TME. We used single-cell RNA sequencing data from eight tissues isolated from four HNSCC donors before and after Nivolumab treatment. Interestingly, the study found that Treg counts and suppressive activity increased following Nivolumab therapy. We also discovered that changes in the CD44-SSP1 axis, NKG2C/D-HLA-E axis, and KRAS signaling may have contributed to the increase in Treg numbers. Furthermore, our study suggests that decreasing the activity of the KRAS and Notch signaling pathways, and increasing FOXP3, CTLA-4, LAG-3, and GZMA expression, may be mechanisms that enhance the killing and suppressive capacity of Tregs. Additionally, the result of pseudo-temporal analysis of the HNSCC TME indicated that after Nivolumab therapy, the expression of certain inhibitory immune checkpoints including TIGIT, ENTPD1, and CD276 and LY9, were decreased in Tregs, while LAG-3 showed an increased expression level. The study also found that Tregs had a dense communication network with cluster two, and that certain ligand-receptor pairs, including SPP1/CD44, HLA-E/KLRC2, HLA-E/KLRK1, ANXA1/FPR3, and CXCL9/FCGR2A, had notable changes after the therapy. These changes in gene expression and cell interactions may have implications for the role of Tregs in the TME and in response to Nivolumab therapy

    Single-cell RNA sequencing uncovers heterogeneous transcriptional signatures in tumor-infiltrated dendritic cells in prostate cancer

    No full text
    Prostate cancer (PCa) is one of the two solid malignancies in which a higher T cell infiltration in the tumor microenvironment (TME) corresponds with a worse prognosis for the tumor. The inability of T cells to eliminate tumor cells despite an increase in their number reinforces the possibility of impaired antigen presentation. In this study, we investigated the TME at single-cell resolution to understand the molecular function and communication of dendritic cells (DCs) (as professional antigen-presenting cells). According to our data, tumor cells stimulate the migration of immature DCs to the tumor site by inducing inflammatory chemokines. Many signaling pathways such as TNF-α/NF-κB, IL2/STAT5, and E2F up-regulated after DCs enter the tumor location. In addition, some molecules such as GPR34 and SLCO2B1 decreased on the surface of DCs. The analysis of molecular and signaling alterations in DCs revealed some suppression mechanisms of tumors, such as removing mature DCs, reducing the DC's survival, inducing anergy or exhaustion in the effector T cells, and enhancing the differentiation of T cells to Th2 and Tregs. In addition, we investigated the cellular and molecular communication between DCs and macrophages in the tumor site and found three molecular pairs including CCR5/CCL5, CD52/SIGLEC10, and HLA-DPB1/TNFSF13B. These molecular pairs are involved in the migration of immature DCs to the TME and disrupt the antigen-presenting function of DCs. Furthermore, we presented new therapeutic targets by the construction of a gene co-expression network. These data increase our knowledge of the heterogeneity and the role of DCs in PCa TME
    corecore