39 research outputs found
Soils of Tropical Dry Forest and with Different Crops Presenting Ascospores of Monosporascus cannonballus
The vine decline caused by Monosporascus cannonballus is a limiting factor in different crops in several countries. The objective of this study was to quantify the M. cannonballus ascospores in soils covered with tropical dry forest and areas cultivated with pineapple, cotton, coconut, corn, mango, melon, papaya, sorghum and watermelon. Five areas were sampled in tropical dry forest and every crop. The M. cannonballus ascospores were extracted using the flotation method of sucrose. Ascospores of M. cannonballus were detected in all soil samples from Rio Grande do Norte and Ceará states, including tropical dry forest. There were significant differences among the ascospores densities of M. cannonballus, which varied from 0.55 to 2.21 ascospores g-1 soil. The lower densities were found in areas with cotton, coconut, mango, pineapple, and melon within the first and fifth years of cultivation, in addition to uncultivated areas of tropical dry forest. The highest ascospores density was found in papaya areas. Up to date, there is no study to prove that this crop is considered host of this phytopathogen. Cultivated areas with cucurbitaceous with more years of cultivation presented higher densities of M. cannonballus ascospores in soils from Brazilian semiarid. However, there is no direct relationship between M. cannonballus population density in the soil and the susceptibility of the host being cultivated in the soil at the time of sampling
Genetic diversity and population structure of Lasiodiplodia theobromae from different hosts in northeastern Brazil and Mexico
This is the peer reviewed version of the following article: Rêgo, T.J.S., Elena, G., Correia, K.C., Tovar‐Pedraza, J.M., Câmara, M.P.S., Armengol, J., Michereff, S.J. and Berbegal, M. (2019), Genetic diversity and population structure of Lasiodiplodia theobromae from different hosts in northeastern Brazil and Mexico. Plant Pathol, 68: 930-938. doi:10.1111/ppa.12997 , which has been published in final form athttps://doi.org/10.1111/ppa.12997. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Lasiodiplodia theobromae is one of the most frequent fungal pathogens associated with dieback, gummosis, leaf spot, stem-end rot and fruit rot symptoms in cashew, mango, papaya and grapevine. In this study, the variation in the genetic diversity of 117 L. theobromae isolates from northeastern Brazil (n = 100) and Mexico (n = 17), which were collected from these four crops, was analysed using microsatellite markers. The results revealed low genetic diversity among L. theobromae populations and the existence of two genetic groups. All Mexican isolates were grouped with Brazilian isolates, suggesting a low level of differentiation between these populations. Furthermore, no evident host or climate-based population differentiation was observed for L. theobromae in Brazil. The populations studied were mostly clonal, but additional studies are needed to better understand the mode of reproduction of the pathogen. The low genetic diversity of L. theobromae populations in northeastern Brazil suggests that resistant cultivars could be used as a durable management strategy to reduce the impact of the diseases caused by this pathogen.This study was financially supported by CoordenacAo de Aperfeicoamento de Pessoal de Nivel Superior - CAPES, 'Ciencia sem Fronteiras - CAPES' (number 88881.132070/2016-01) and the Universitat Politecnica de Valencia. G.E. was supported by the Spanish postdoctoral grant Juan de la Cierva-Formacion. The authors thank Maela Leon and Valentin Garrigues (Universitat Politecnica de Valencia, Valencia, Spain) for laboratory support. The authors declare no conflicts of interest.Rêgo, T.; Elena-Jiménez, G.; Correia, KC.; Tovar-Pedraza J.M.; Câmara, MPS.; Armengol Fortí, J.; Michereff, SJ.... (2019). Genetic diversity and population structure of Lasiodiplodia theobromae from different hosts in northeastern Brazil and Mexico. Plant Pathology. 68(5):930-938. https://doi.org/10.1111/ppa.12997S930938685Agapow, P.-M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1(1-2), 101-102. doi:10.1046/j.1471-8278.2000.00014.xAlvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi:10.1127/0941-2948/2013/0507Archer, F. I., Adams, P. E., & Schneiders, B. B. (2016). stratag: Anrpackage for manipulating, summarizing and analysing population genetic data. Molecular Ecology Resources, 17(1), 5-11. doi:10.1111/1755-0998.12559ARNAUD-HAOND, S., DUARTE, C. M., ALBERTO, F., & SERRÃO, E. A. (2007). Standardizing methods to address clonality in population studies. Molecular Ecology, 16(24), 5115-5139. doi:10.1111/j.1365-294x.2007.03535.xBegoude Boyogueno, A. D., Slippers, B., Perez, G., Wingfield, M. J., & Roux, J. (2012). High gene flow and outcrossing within populations of two cryptic fungal pathogens on a native and non-native host in Cameroon. Fungal Biology, 116(3), 343-353. doi:10.1016/j.funbio.2011.12.001Berbegal, M., Pérez-Sierra, A., Armengol, J., & Grünwald, N. J. (2013). Evidence for Multiple Introductions and Clonality in Spanish Populations of Fusarium circinatum. Phytopathology®, 103(8), 851-861. doi:10.1094/phyto-11-12-0281-rBRUVO, R., MICHIELS, N. K., D’SOUZA, T. G., & SCHULENBURG, H. (2004). A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology, 13(7), 2101-2106. doi:10.1111/j.1365-294x.2004.02209.xBurgess, T., Wingfield, M. J., & Wingfield, B. D. (2003). Development and characterization of microsatellite loci for the tropical tree pathogen Botryosphaeria rhodina. Molecular Ecology Notes, 3(1), 91-94. doi:10.1046/j.1471-8286.2003.00361.xBurgess, T. I., Barber, P. A., Mohali, S., Pegg, G., de Beer, W., & Wingfield, M. J. (2006). Three new Lasiodiplodia spp. from the tropics, recognized based on DNA sequence comparisons and morphology. Mycologia, 98(3), 423-435. doi:10.3852/mycologia.98.3.423Burgess, T. I., Crous, C. J., Slippers, B., Hantula, J., & Wingfield, M. J. (2016). Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AoB Plants, 8, plw076. doi:10.1093/aobpla/plw076Correia, K. C., Silva, M. A., de Morais, M. A., Armengol, J., Phillips, A. J. L., Câmara, M. P. S., & Michereff, S. J. (2015). Phylogeny, distribution and pathogenicity ofLasiodiplodiaspecies associated with dieback of table grape in the main Brazilian exporting region. Plant Pathology, 65(1), 92-103. doi:10.1111/ppa.12388Coutinho, I. B. L., Freire, F. C. O., Lima, C. S., Lima, J. S., Gonçalves, F. J. T., Machado, A. R., … Cardoso, J. E. (2016). Diversity of genusLasiodiplodiaassociated with perennial tropical fruit plants in northeastern Brazil. Plant Pathology, 66(1), 90-104. doi:10.1111/ppa.12565Cruywagen, E. M., Slippers, B., Roux, J., & Wingfield, M. J. (2017). Phylogenetic species recognition and hybridisation in Lasiodiplodia : A case study on species from baobabs. Fungal Biology, 121(4), 420-436. doi:10.1016/j.funbio.2016.07.014Dray, S., & Dufour, A.-B. (2007). Theade4Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4). doi:10.18637/jss.v022.i04PINAUD, D., & WEIMERSKIRCH, H. (2007). At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: a comparative study. Journal of Animal Ecology, 76(1), 9-19. doi:10.1111/j.1365-2656.2006.01186.xFAO 2018.FAOSTAT. [http://www.fao.org/faostat/en/#data/QC]. Accessed 8 August 2018.Grünwald, N. J., Goodwin, S. B., Milgroom, M. G., & Fry, W. E. (2003). Analysis of Genotypic Diversity Data for Populations of Microorganisms. Phytopathology®, 93(6), 738-746. doi:10.1094/phyto.2003.93.6.738Grünwald, N. J., Everhart, S. E., Knaus, B. J., & Kamvar, Z. N. (2017). Best Practices for Population Genetic Analyses. Phytopathology®, 107(9), 1000-1010. doi:10.1094/phyto-12-16-0425-rvwHedrick, P. W. (2005). A STANDARDIZED GENETIC DIFFERENTIATION MEASURE. Evolution, 59(8), 1633-1638. doi:10.1111/j.0014-3820.2005.tb01814.xIBGE 2018.PAM 2016: valor da produção agrícola nacional foi 20% maior do que em 2015. Instituto Brasileiro de Geografia e Estatística. [https://agenciadenoticias.ibge.gov.br/agencia-noticias/2013-agencia-de-noticias/releases/16814‐pam‐2016‐valor‐da‐producao‐agricola‐nacional‐foi‐20‐maior‐do‐que‐em‐2015.ht ml]. Accessed 8 August 2018.Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. doi:10.1093/bioinformatics/btn129Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. doi:10.1186/1471-2156-11-94Kamvar, Z. N., Brooks, J. C., & Grünwald, N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in Genetics, 6. doi:10.3389/fgene.2015.00208Marques, M. W., Lima, N. B., de Morais, M. A., Barbosa, M. A. G., Souza, B. O., Michereff, S. J., … Câmara, M. P. S. (2013). Species of Lasiodiplodia associated with mango in Brazil. Fungal Diversity, 61(1), 181-193. doi:10.1007/s13225-013-0231-zBEVAN, J. R., CLARKE, D. D., & CRUTE, I. R. (1993). Resistance to Erysiphe fischeri in two populations of Senecio vulgaris. Plant Pathology, 42(4), 636-646. doi:10.1111/j.1365-3059.1993.tb01544.xMehl, J., Wingfield, M., Roux, J., & Slippers, B. (2017). Invasive Everywhere? Phylogeographic Analysis of the Globally Distributed Tree Pathogen Lasiodiplodia theobromae. Forests, 8(5), 145. doi:10.3390/f8050145BARRETT, L. G., & BRUBAKER, C. L. (2006). Isolation and characterization of microsatellite loci from the rust pathogen, Melampsora lini. Molecular Ecology Notes, 6(3), 930-932. doi:10.1111/j.1471-8286.2006.01404.xMohali, S., Burgess, T. I., & Wingfield, M. J. (2005). Diversity and host association of the tropical tree endophyte Lasiodiplodia theobromae revealed using simple sequence repeat markers. Forest Pathology, 35(6), 385-396. doi:10.1111/j.1439-0329.2005.00418.xNetto, M. S. B., Assunção, I. P., Lima, G. S. A., Marques, M. W., Lima, W. G., Monteiro, J. H. A., … Câmara, M. P. S. (2014). Species of Lasiodiplodia associated with papaya stem-end rot in Brazil. Fungal Diversity, 67(1), 127-141. doi:10.1007/s13225-014-0279-4Netto, M. S. B., Lima, W. G., Correia, K. C., da Silva, C. F. B., Thon, M., Martins, R. B., … Câmara, M. P. S. (2017). Analysis of phylogeny, distribution, and pathogenicity of Botryosphaeriaceae species associated with gummosis of Anacardium in Brazil, with a new species of Lasiodiplodia. Fungal Biology, 121(4), 437-451. doi:10.1016/j.funbio.2016.07.006Phillips, A. J. L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M. J., Groenewald, J. Z., & Crous, P. W. (2013). The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology, 76, 51-167. doi:10.3114/sim0021Santos, P. H. D., Carvalho, B. M., Aguiar, K. P., Aredes, F. A. S., Poltronieri, T. P. S., Vivas, J. M. S., … Silveira, S. F. (2017). Phylogeography and population structure analysis reveals diversity by mutations in Lasiodiplodia theobromae with distinct sources of selection. Genetics and Molecular Research, 16(2). doi:10.4238/gmr16029681Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18(2), 233-234. doi:10.1038/72708Shah, M.-U.-D., Verma, K. S., Singh, K., & Kaur, R. (2011). Genetic diversity and gene flow estimates among three populations ofBotryodiplodia theobromaecausing die-back and bark canker of pear in Punjab. Archives Of Phytopathology And Plant Protection, 44(10), 951-960. doi:10.1080/03235400903458829Slippers, B., & Wingfield, M. J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21(2-3), 90-106. doi:10.1016/j.fbr.2007.06.002VARSHNEY, R., GRANER, A., & SORRELLS, M. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10(12), 621-630. doi:10.1016/j.tplants.2005.10.004Winter, D. J. (2012). mmod: an R library for the calculation of population differentiation statistics. Molecular Ecology Resources, 12(6), 1158-1160. doi:10.1111/j.1755-0998.2012.03174.
Reação de genótipos de meloeiro a Myrothecium
A expansão da cultura do meloeiro (Cucumis melo L.) no Nordeste brasileiro tem favorecido a ocorrência de doenças como o cancro-de-mirotécio, causado pelo fungo Myrothecium roridum. Visando selecionar genótipos com potencial de utilização nos programas de melhoramento e/ou no manejo integrado da doença, foram avaliados 150 genótipos de meloeiro. Plantas com 22 dias de idade, desenvolvidas em casa de vegetação, foram feridas no colo e inoculadas com uma suspensão do patógeno (3x10(6) conídios/ml). As avaliações foram realizadas diariamente, até seis dias após a retirada da câmara úmida, com o auxílio de uma escala descritiva de notas de 0 a 4. Com os dados da última avaliação, os genótipos foram distribuídos em cinco classes de reação à doença. Nenhum genótipo foi imune ou altamente resistente ao patógeno, enquanto 26,7% foram medianamente resistentes (MR) e 73,3% foram suscetíveis (S) ou altamente suscetíveis (AS). Esses resultados evidenciam a dificuldade na obtenção de fontes com elevados níveis de resistência a M. roridum. Os grupos Cantaloupe, Charentais, Gália e 'Indefinido' apresentaram a maior freqüência de genótipos com a reação MR e a menor freqüência de genótipos AS. A maioria dos genótipos dos grupos Valenciano Verde (66,7%), Cantaloupe (57,4%), Gália (60,0%) e 'Indefinido' (53,8%) foram S. Os genótipos 'PI 420149', 'Caroline', 'A3', 'Chilton' e 'PS-1 Pele de Sapo' apresentaram os menores valores de severidade final da doença e mostraram-se promissoras fontes de resistência ao patógeno e devem ser preferidos sob condições favoráveis à doença
Incidence and pathogenicity of Phaeacremonium species associated with Petri disease of table grapes in northeastern Brazil
Trabajo presentado en el 10th International Workshop on Grapevine Trunk Diseases, celebrado en Reims (Francia), del 4 al 7 de julio de 2017Peer reviewe