3,462 research outputs found

    Static Properties of Trapped Bose Gases at Finite Temperature: I. Thomas- Fermi Limit

    Full text link
    We rely on a variational approach to derive a set of equations governing a trapped self-interacting Bose gas at finite temperature. In this work, we analyze the static situation both at zero and finite temperature in the Thomas-Fermi limit. We derive simple analytic expressions for the condensate properties at finite temperature. The noncondensate and anomalous density profiles are also analyzed in terms of the condensate fraction. The results are quite encouraging owing to the simplicity of the formalism.Comment: 11 pages, 9 figures, revised versio

    Radiation and cancer risk: a continuing challenge for epidemiologists

    Get PDF
    This paper provides a perspective on epidemiological research on radiation and cancer, a field that has evolved over its six decade history. The review covers the current framework for assessing radiation risk and persistent questions about the details of these risks: is there a threshold and more generally, what is the shape of the dose-response relationship? How do risks vary over time and with age? What factors modify the risk of radiation? The example of radon progeny and lung cancer is considered as a case study, illustrating the modeling of epidemiological data to derive quantitative models and the coherence of the epidemiological and biological evidence. Finally, the manuscript considers the need for ongoing research, even in the face of research over a 60-year span

    Antimicrobial effects of folk medicinal plants from the North of Iran against Mycobacterium tuberculosis

    Get PDF
    Background: Medicinal plants have been used traditionally in Golestan province (north of Iran), against Mycobacterium tuberculosis or the clinical signs of tuberculosis (TB). Objectives: This study aimed to define the inhibitory effects of ethanolic extracts of six of these medicinal plants against Mycobacterium tuberculosis. Materials and Methods: Peganum harmala (seed extract), Punica granatum (peel extract), Digitalis sp. (leaf extract), fruit extract of Citrus lemon, Rosa canina and Berberis vulgaris were extracted in ethanol and their activity against M. tuberculosis isolates were determined by the agar diffusion method. The zone of inhibition (at 200 to 1.6 mg/mL) was measured and the results were compared with isoniazid and rifampin as standard positive controls. Also the concentration of vitamin C of each the extracts was evaluated. Results: The ethanolic extract of Peganum harmala seed and Punica granatum peel exhibited potential activity against all M. tuberculosis isolates with mean inhibitory zone of 18.7 and 18.8 mm, at 200 mg/mL concentration. The mean inhibitory zone around isoniazid and rifampinwere 19.2 and 18.8 mm. Ethanolic extract of Citrus lemon showed moderate inhibitory activity only against sensitive (non MDR; non multi drug resistant) strains of M. tuberculosis, and Digitalis sp. showed inhibitory effects on five isolates. Ascorbic acid content was 43.3 mg/dL in Punica granatum and Digitalis sp. and only 9.1 mg/dL in ethanolic extract of Peganum harmala. Conclusions: The highest content of vitamin C was observed in the extract of Punica granatum, which was observed to be highly active against Mycobacterium tuberculosis, while the P. harmala must have contained other phytochemical constituents that contributed to the anti-tuberculosis effects of this plant. Our findings showed that ethanolic extracts of P. granatum and P. harmala had anti-TB effects comparable to isoniazid and rifampin and can be good candidates for novel and safe natural products against tuberculosis. © 2015, Pediatric Infections Research Center

    Biologic effects of oil fly ash.

    Get PDF
    Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle burden. Residual oil fly ash (ROFA) is remarkable in the capacity to provoke injury in experimental systems. The unique composition of this emission source particle makes it particularly useful as a surrogate for ambient air PM in studies of biologic effects testing the hypothesis that metals mediate the biologic effects of air pollution particles. A majority of the in vitro and animal model investigations support the postulate that transition metals present in ROFA (especially vanadium) participate in Fenton-like chemical reactions to produce reactive oxygen species. This is associated with tyrosine phosphorylation, nuclear factor kappa B and other transcription factor activation, induction of inflammatory mediator expression, and inflammatory lung injury. It is also evident that vanadium accounts for a significant portion of the biologic activity of ROFA. The extrapolation of this body of investigation on ROFA to the field of ambient air PM is difficult, as particles in numerous environments have such small amounts of vanadium
    corecore