8 research outputs found

    Evaluation of automated multiclass fluid segmentation in optical coherence tomography images using the Pegasus fluid segmentation algorithms

    Get PDF
    Purpose: To evaluate the performance of the Pegasus-OCT (Visulytix Ltd) multiclass automated fluid segmentation algorithms on independent spectral domain optical coherence tomography data sets. Methods: The Pegasus automated fluid segmentation algorithms were applied to three data sets with edematous pathology, comprising 750, 600, and 110 b-scans, respectively. Intraretinal fluid (IRF), sub-retinal fluid (SRF), and pigment epithelial detachment (PED) were automatically segmented by Pegasus-OCT for each b-scan where ground truth from data set owners was available. Detection performance was assessed by calculating sensitivities and specificities, while Dice coefficients were used to assess agreement between the segmentation methods. Results: For two data sets, IRF detection yielded promising sensitivities (0.98 and 0.94, respectively) and specificities (1.00 and 0.98) but less consistent agreement with the ground truth (dice coefficients 0.81 and 0.59); likewise, SRF detection showed high sensitivity (0.86 and 0.98) and specificity (0.83 and 0.89) but less consistent agreement (0.59 and 0.78). PED detection on the first data set showed moderate agreement (0.66) with high sensitivity (0.97) and specificity (0.98). IRF detection in a third data set yielded less favorable agreement (0.46–0.57) and sensitivity (0.59–0.68), attributed to image quality and ground truth grader discordance. Conclusions: The Pegasus automated fluid segmentation algorithms were able to detect IRF, SRF, and PED in SD-OCT b-scans acquired across multiple independent data sets. Dice coefficients and sensitivity and specificity values indicate the potential for application to automated detection and monitoring of retinal diseases such as age-related macular degeneration and diabetic macular edema. Translational Relevance: The potential of Pegasus-OCT for automated fluid quantification and differentiation of IRF, SRF, and PED in OCT images has application to both clinical practice and research

    Acute suprachoroidal haemorrhage post-tenecteplase thrombolysis for myocardial infarction: management considerations

    No full text
    We report a case of a 63-year-old man who received intravenous tenecteplase as thrombolytic therapy for an inferior ST elevation myocardial infarction. Three hours later he complained of blurred vision in the right eye and on examination had sustained a suprachoroidal haemorrhage. With conservative treatment the haemorrhage resolved, leading to a normalisation of visual acuity. To the authors’ knowledge, no case reports exist of this rare complication following intravenous tenecteplase. We discuss implications for further thrombolysis and anticoagulation

    Disease classification of macular optical coherence tomography scans using deep learning software: validation on independent, multi-center data

    No full text
    Purpose: To evaluate Pegasus optical coherence tomography (OCT), a clinical decision support software for the identification of features of retinal disease from macula OCT scans, across heterogenous populations involving varying patient demographics, device manufacturers, acquisition sites, and operators. Methods: Five thousand five hundred and eighty-eight normal and anomalous macular OCT volumes (162,721 B-scans), acquired at independent centers in five countries, were processed using the software. Results were evaluated against ground truth provided by the data set owners. Results: Pegasus-OCT performed with areas under the curve of the receiver operating characteristic of at least 98% for all data sets in the detection of general macular anomalies. For scans of sufficient quality, the areas under the curve of the receiver operating characteristic for general age-related macular degeneration and diabetic macular edema detection were found to be at least 99% and 98%, respectively. Conclusion: The ability of a clinical decision support system to cater for different populations is key to its adoption. Pegasus-OCT was shown to be able to detect age-related macular degeneration, diabetic macular edema, and general anomalies in OCT volumes acquired across multiple independent sites with high performance. Its use thus offers substantial promise, with the potential to alleviate the burden of growing demand in eye care services caused by retinal disease
    corecore