20 research outputs found

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Background: A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97\ub71 (95% UI 95\ub78-98\ub71) in Iceland, followed by 96\ub76 (94\ub79-97\ub79) in Norway and 96\ub71 (94\ub75-97\ub73) in the Netherlands, to values as low as 18\ub76 (13\ub71-24\ub74) in the Central African Republic, 19\ub70 (14\ub73-23\ub77) in Somalia, and 23\ub74 (20\ub72-26\ub78) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91\ub75 (89\ub71-93\ub76) in Beijing to 48\ub70 (43\ub74-53\ub72) in Tibet (a 43\ub75-point difference), while India saw a 30\ub78-point disparity, from 64\ub78 (59\ub76-68\ub78) in Goa to 34\ub70 (30\ub73-38\ub71) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4\ub78-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20\ub79-point to 17\ub70-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17\ub72-point to 20\ub74-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view-and subsequent provision-of quality health care for all populations

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Copyright © 2018 The Author(s). Published by Elsevier Ltd. Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8-98·1) in Iceland, followed by 96·6 (94·9-97·9) in Norway and 96·1 (94·5-97·3) in the Netherlands, to values as low as 18·6 (13·1-24·4) in the Central African Republic, 19·0 (14·3-23·7) in Somalia, and 23·4 (20·2-26·8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91·5 (89·1-93·6) in Beijing to 48·0 (43·4-53·2) in Tibet (a 43·5-point difference), while India saw a 30·8-point disparity, from 64·8 (59·6-68·8) in Goa to 34·0 (30·3-38·1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4·8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20·9-point to 17·0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17·2-point to 20·4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view - and subsequent provision - of quality health care for all populations

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    This online publication has been corrected. The corrected version first appeared at thelancet.com on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016.

    Get PDF
    BACKGROUND: A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. METHODS: Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita

    Reduction of postoperative pain after infiltration of local anesthetic at the port site and subdiaphragmatic space in laparoscopic cholecystectomy: A cross-sectional study

    Full text link
    Introduction: Port site and subdiaphragmatic infiltration of local anesthetics during laparoscopic cholecystectomy (LC) is preferred by surgeons to decrease postoperative pain. LC with local anesthetics infiltration as well as without any local anesthetic both have been standard surgical practice. However, the difference in the reduction of postoperative pain in these two groups is not well known. The objective of the study was to compare the postoperative pain with and without infiltration of local anesthetic at the port site and subdiaphragmatic space in LC.   Methods: A hospital-based cross-sectional study was conducted from 25 April 2021 to 25 October 2021 among 60 patients who underwent elective LC.  The patients were divided into two equal groups. The study group received infiltration of 20 ml of bupivacaine (0.5%) at the port site and the subdiaphragmatic space, while the control group did not receive any local anesthetic. The primary outcome measure was the visual analog pain score at 6, 12, 24 and 48hrs postoperatively.   Results: Among 60 patients, the majority were female- 40(66.7%); and 40-50 years age group. The two groups were comparable in terms of age, sex, ASA, BMI and duration of pneumoperitoneum and surgery. Infiltration of a local anesthetic agent produced effective postoperative analgesia in the immediate postoperative hours  (6, 12 and 24 hours) and was found to be statistically significant when compared to the no-local anesthesia group.   Conclusion: The intraoperative port site and subdiaphragmatic local infiltration is effective at reducing postoperative pain in the first 12 hours without any adverse events

    Reduction of postoperative pain after infiltration of local anesthetic at the port site and subdiaphragmatic space in laparoscopic cholecystectomy: A cross-sectional study

    Full text link
    Introduction: Port site and subdiaphragmatic infiltration of local anesthetics during laparoscopic cholecystectomy (LC) is preferred by surgeons to decrease postoperative pain. LC with local anesthetics infiltration as well as without any local anesthetic both have been standard surgical practice. However, the difference in the reduction of postoperative pain in these two groups is not well known. The objective of the study was to compare the postoperative pain with and without infiltration of local anesthetic at the port site and subdiaphragmatic space in LC.   Methods: A hospital-based cross-sectional study was conducted from 25 April 2021 to 25 October 2021 among 60 patients who underwent elective LC.  The patients were divided into two equal groups. The study group received infiltration of 20 ml of bupivacaine (0.5%) at the port site and the subdiaphragmatic space, while the control group did not receive any local anesthetic. The primary outcome measure was the visual analog pain score at 6, 12, 24 and 48hrs postoperatively.   Results: Among 60 patients, the majority were female- 40(66.7%); and 40-50 years age group. The two groups were comparable in terms of age, sex, ASA, BMI and duration of pneumoperitoneum and surgery. Infiltration of a local anesthetic agent produced effective postoperative analgesia in the immediate postoperative hours  (6, 12 and 24 hours) and was found to be statistically significant when compared to the no-local anesthesia group.   Conclusion: The intraoperative port site and subdiaphragmatic local infiltration is effective at reducing postoperative pain in the first 12 hours without any adverse events

    Transcriptome analysis of a nematode resistant and susceptible upland cotton line at two critical stages of Meloidogyne incognita infection and development.

    Full text link
    Host plant resistance is the most practical approach to control the Southern root-knot nematode (Meloidogyne incognita; RKN), which has emerged as one of the most serious economic pests of Upland cotton (Gossypium hirsutum L.). Previous QTL analyses have identified a resistance locus on chromosome 11 (qMi-C11) affecting galling and another locus on chromosome-14 (qMi-C14) affecting egg production. Although these two QTL regions were fine mapped and candidate genes identified, expression profiling of genes would assist in further narrowing the list of candidate genes in the QTL regions. We applied the comparative transcriptomic approach to compare expression profiles of genes between RKN susceptible and resistance genotypes at an early stage of RKN development that coincides with the establishment of a feeding site and at the late stage of RKN development that coincides with RKN egg production. Sequencing of cDNA libraries produced over 315 million reads of which 240 million reads (76%) were mapped on to the Gossypium hirsutum genome. A total of 3,789 differentially expressed genes (DEGs) were identified which were further grouped into four clusters based on their expression profiles. A large number of DEGs were found to be down regulated in the susceptible genotype at the late stage of RKN development whereas several genes were up regulated in the resistant genotype. Key enriched categories included transcription factor activity, defense response, response to phyto-hormones, cell wall organization, and protein serine/threonine kinase activity. Our results also show that the DEGs in the resistant genotype at qMi-C11 and qMi-C14 loci displayed higher expression of defense response, detoxification and callose deposition genes, than the DEGs in the susceptible genotype

    Genetic Analysis of Gossypium Fiber Quality Traits in Reciprocal Advanced Backcross Populations

    Full text link
    In mapping populations segregating for many loci, the large amount of variation among genotypes often masks small-effect quantitative trait loci (QTL). This problem can be reduced by development of populations with fewer chromosome segments segregating. Here, we report early QTL detection in reciprocal advanced backcross populations from crosses between elite Gossypium hirsutum L. ‘Acala Maxxa’ (GH) and G. barbadense L. ‘Pima S6’ (GB). A total of 297 BCF and BCF progeny rows—127 segregating for GB chromosome segments in GH background and 170 segregating for GH chromosome segments in GB background—were evaluated in three environments. Totals of 3186 and 3026 polymorphic single-nucleotide polymorphisms (SNPs) in GH and GB backgrounds, respectively, were identified and used for trait mapping. Small-effect QTL (<10% variance explained) made up 87 and 100% of QTL in GH and GB backgrounds, respectively. In both species, favorable alleles were found with effects being masked or neutralized by unfavorable alleles, with greater scope for improvement of GH than GB by introgressive breeding. A total of three stable QTL—two in GH background for fiber elongation (ELO) and micronaire (MIC) and one in GB background for upper-half mean length (UHM)—were identified in two out of three environments. Curiously, only four QTL—three for UHM and one for ELO—showed the expected opposite effects in reciprocal backgrounds, perhaps reflecting the combined consequences of epistasis, small phenotypic effects, and low coverage of some genomic regions. Along with new information for marker-assisted breeding, this study adds to knowledge that can be used to unravel complex genetic networks governing fiber quality traits

    Molecular Dissection of Quantitative Variation in Bermudagrass Hybrids (Cynodon dactylon x transvaalensis): Morphological Traits

    Full text link
    Bermudagrass (Cynodon (L.)) is the most important warm-season grass grown for forage or turf. It shows extensive variation in morphological characteristics and growth attributes, but the genetic basis of this variation is little understood. Detection and tagging of quantitative trait loci (QTL) affecting above-ground morphology with diagnostic DNA markers would provide a foundation for genetic and molecular breeding applications in bermudagrass. Here, we report early findings regarding genetic architecture of foliage (canopy height, HT), stolon (stolon internode length, ILEN and length of the longest stolon LLS), and leaf traits (leaf blade length, LLEN and leaf blade width, LW) in 110 F1 individuals derived from a cross between Cynodon dactylon (T89) and C. transvaalensis (T574). Separate and joint environment analyses were performed on trait data collected across two to five environments (locations, and/or years, or time), finding significant differences (P < 0.001) among the hybrid progeny for all traits. Analysis of marker-trait associations detected 74 QTL and 135 epistatic interactions. Composite interval mapping (CIM) and mixed-model CIM (MCIM) identified 32 main effect QTL (M-QTL) and 13 interacting QTL (int-QTL). Colocalization of QTL for plant morphology partially explained significant correlations among traits. M-QTL qILEN-3-2 (for ILEN; R2 = 11–19%), qLLS-7-1 (for LLS; R2 = 13–27%), qLEN-1-1 (for LLEN; R2 = 10–11%), and qLW-3-2 (for LW; R2 = 10–12%) were ‘stable’ across multiple environments, representing candidates for fine mapping and applied breeding applications. QTL correspondence between bermudagrass and divergent grass lineages suggests opportunities to accelerate progress by predictive breeding of bermudagrass

    Meta-Analysis of Efficacy and Safety of Intravenous Iron in Patients With Iron Deficiency and Heart Failure With Reduced Ejection Fraction

    Full text link
    Iron deficiency is an independent risk factor for heart failure (HF) exacerbation. We aim to study the safety and efficacy of intravenous (IV) iron therapy in patients with HF with reduced ejection fraction (HFrEF). A literature search was conducted on MEDLINE (Embase and PubMed) using a systematic search strategy by PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) until October 2022. CRAN-R software (The R Foundation for Statistical Computing, Vienna, Austria) was used for statistical analysis. The quality assessment was performed using the Cochrane Risk of Bias and Newcastle-Ottawa Scale. We included 12 studies with a total of 4,376 patients (IV iron n = 1,985 [45.3%]; standard of care [SOC] n = 2,391 [54.6%]). The mean age was 70.37 ± 8.14 years and 71.75 ± 7.01 years in the IV iron and SOC groups, respectively. There was no significant difference in all-cause mortality and cardiovascular mortality (risk ratio [RR] 0.88, 95% confidence interval [CI] 0.74 to 1.04, p \u3c0.15). However, HF readmissions were significantly lower in the IV iron group (RR 0.73, 95% CI 0.56 to 0.96, p = 0.026). Non-HF cardiac readmissions were not significantly different between the IV iron and SOC groups (RR 0.92, 95% CI 0.82 to 1.02, p = 0.12). In terms of safety, there was a similar rate of infection-related adverse events in both arms (RR 0.86, 95% CI 0.74 to 1, p = 0.05). IV iron therapy in patients with HFrEF is safe and shows a significant reduction in HF hospitalizations compared with SOC. There was no difference in the rate of infection-related adverse events. The changing landscape of HFrEF pharmacotherapy in the last decade may warrant a re-demonstration of the benefit of IV iron with current SOC. The cost-effectiveness of IV iron use also needs further study
    corecore