21 research outputs found
Extragalactic jets on subpc and large scales
Jets can be probed in their innermost regions (d~0.1 pc) through the study of
the relativistically-boosted emission of blazars. On the other extreme of
spatial scales, the study of structure and dynamics of extragalactic
relativistic jets received renewed impulse after the discovery, made by
Chandra, of bright X-ray emission from regions at distances larger than
hundreds of kpc from the central engine. At both scales it is thus possible to
infer some of the basic parameters of the flow (speed, density, magnetic field
intensity, power). After a brief review of the available observational
evidence, I discuss how the comparison between the physical quantities
independently derived at the two scales can be used to shed light on the global
dynamics of the jet, from the innermost regions to the hundreds of kpc scale.Comment: Proceedings of the 5th Stromlo Symposium: Disks, Winds, and Jets -
from Planets to Quasars. Accepted, to be published in Astrophysics & Space
Scienc
Probing Broad Absorption Line Quasar Outflows: X-ray Insights
Energetic outflows appear to occur in conjunction with active mass accretion
onto supermassive black holes. These outflows are most readily observed in the
approximately 10% of quasars with broad absorption lines, where the observer's
line of sight passes through the wind. Until fairly recently, the paucity of
X-ray data from these objects was notable, but now sensitive hard-band missions
such as Chandra and XMM-Newton are routinely detecting broad absorption line
quasars. The X-ray regime offers qualitatively new information for the
understanding of these objects, and these new results must be taken into
account in theoretical modeling of quasar winds.Comment: Submitted to Advances in Space Research for New X-ray Results from
Clusters of Galaxies and Black Holes (Oct 2002; Houston, TX), eds. C. Done,
E.M. Puchnarewicz, M.J. Ward. Requires cospar.sty (6 pgs, 5 figs
Blazar nuclei in radio-loud narrow-line Seyfert 1?
It has been suggested that some radio-loud narrow-line Seyfert 1 contain
relativistic jets, on the basis of their flat-spectrum radio nuclei and studies
on variability. We present preliminary results of an ongoing investigation of
the X-ray and multiwavelength properties of 5 radio-loud NLS1 based on archival
data from Swift and XMM-Newton. Some sources present interesting
characteristics, very uncharacteristic for a radio-quiet narrow-line Seyfert 1,
such as very hard X-ray spectra, and correlated optical and ultraviolet
variability. However, none of the studied sources show conclusive evidence for
relativistic jets. gamma-ray observations with Fermi are strongly recommended
to definitely decide on the presence or not of relativistic jets.Comment: 9 pages, 4 figures. Talk presented at the 37th COSPAR Assembly
(Montreal, Canada, July 13-20, 2008), Session E17. Accepted for publication
on Advances in Space Researc
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
Fermi acceleration in astrophysical jets
We consider the acceleration of energetic particles by Fermi processes (i.e.,
diffusive shock acceleration, second order Fermi acceleration, and gradual
shear acceleration) in relativistic astrophysical jets, with particular
attention given to recent progress in the field of viscous shear acceleration.
We analyze the associated acceleration timescales and the resulting particle
distributions, and discuss the relevance of these processes for the
acceleration of charged particles in the jets of AGNs, GRBs and microquasars,
showing that multi-component powerlaw-type particle distributions are likely to
occur.Comment: 6 pages, one figure; based on talk at "The multimessenger approach to
unidentified gamma-ray sources", Barcelona/Spain, July 2006; accepted for
publication in Astrophysics and Space Scienc
X-ray to infrared observations of the cataclysmic variable KO Vel (E1013-477)
To appear in The Astrophysical JournalSIGLEITItal