162 research outputs found
Coherent transport in a two-electron quantum dot molecule
We investigate the dynamics of two interacting electrons confined to a pair
of coupled quantum dots driven by an external AC field. By numerically
integrating the two-electron Schroedinger equation in time, we find that for
certain values of the strength and frequency of the AC field we can cause the
electrons to be localised within the same dot, in spite of the Coulomb
repulsion between them. Reducing the system to an effective two-site model of
Hubbard type and applying Floquet theory leads to a detailed understanding of
this effect. This demonstrates the possibility of using appropriate AC fields
to manipulate entangled states in mesoscopic devices on extremely short
timescales, which is an essential component of practical schemes for quantum
information processing.Comment: 4 pages, 3 figures; the section dealing with the perturbative
treatment of the Floquet states has been substantially expanded to make it
easier to follo
Recurrence of fidelity in near integrable systems
Within the framework of simple perturbation theory, recurrence time of
quantum fidelity is related to the period of the classical motion. This
indicates the possibility of recurrence in near integrable systems. We have
studied such possibility in detail with the kicked rotor as an example. In
accordance with the correspondence principle, recurrence is observed when the
underlying classical dynamics is well approximated by the harmonic oscillator.
Quantum revivals of fidelity is noted in the interior of resonances, while
classical-quantum correspondence of fidelity is seen to be very short for
states initially in the rotational KAM region.Comment: 13 pages, 6 figure
Harmonic generation in ring-shaped molecules
We study numerically the interaction between an intense circularly polarized
laser field and an electron moving in a potential which has a discrete
cylindrical symmetry with respect to the laser pulse propagation direction.
This setup serves as a simple model, e.g., for benzene and other aromatic
compounds. From general symmetry considerations, within a Floquet approach,
selection rules for the harmonic generation [O. Alon Phys. Rev. Lett. 80 3743
(1998)] have been derived recently. Instead, the results we present in this
paper have been obtained solving the time-dependent Schroedinger equation ab
initio for realistic pulse shapes. We find a rich structure which is not always
dominated by the laser harmonics.Comment: 15 pages including 7 figure
High-order Harmonic Generation and Dynamic Localization in a driven two-level system, a non-perturbative solution using the Floquet-Green formalism
We apply the Floquet-Green operator formalism to the case of a
harmonically-driven two-level system. We derive exact expressions for the
quasi-energies and the components of the Floquet eigenstates with the use of
continued fractions. We study the avoided crossings structure of the
quasi-energies as a function of the strength of the driving field and give an
interpretation in terms of resonant multi-photon processes. From the Floquet
eigenstates we obtain the time-evolution operator. Using this operator we study
Dynamic Localization and High-order Harmonic Generation in the non-perturbative
regime
Nonperturbative Coherent Population Trapping: An Analytic Model
Coherent population trapping is shown to occur in a driven symmetric
double-well potential in the strong-field regime. The system parameters have
been chosen to reproduce the transition of the
inversion mode of the ammonia molecule. For a molecule initially prepared in
its lower doublet we find that, under certain circumstances, the level
remains unpopulated, and this occurs in spite of the fact that the laser field
is resonant with the transition and intense enough
so as to strongly mix the and ground states. This
counterintuitive result constitutes a coherent population trapping phenomenon
of nonperturbative origin which cannot be accounted for with the usual models.
We propose an analytic nonperturbative model which accounts correctly for the
observed phenomenon.Comment: 5 pages, 2 figure
Transmission Properties of the oscillating delta-function potential
We derive an exact expression for the transmission amplitude of a particle
moving through a harmonically driven delta-function potential by using the
method of continued-fractions within the framework of Floquet theory. We prove
that the transmission through this potential as a function of the incident
energy presents at most two real zeros, that its poles occur at energies
(), and that the
poles and zeros in the transmission amplitude come in pairs with the distance
between the zeros and the poles (and their residue) decreasing with increasing
energy of the incident particle. We also show the existence of non-resonant
"bands" in the transmission amplitude as a function of the strength of the
potential and the driving frequency.Comment: 21 pages, 12 figures, 1 tabl
Molecular Wires Acting as Coherent Quantum Ratchets
The effect of laser fields on the electron transport through a molecular wire
being weakly coupled to two leads is investigated. The molecular wire acts as a
coherent quantum ratchet if the molecule is composed of periodically arranged,
asymmetric chemical groups. This setup presents a quantum rectifier with a
finite dc-response in the absence of a static bias. The nonlinear current is
evaluated in closed form within the Floquet basis of the isolated, driven wire.
The current response reveals multiple current reversals together with a
nonlinear dependence (reflecting avoided quasi-energy crossings) on both, the
amplitude and the frequency of the laser field. The current saturates for long
wires at a nonzero value, while it may change sign upon decreasing its length.Comment: 4 pages, 4 figures, RevTeX
Dynamical control of correlated states in a square quantum dot
In the limit of low particle density, electrons confined to a quantum dot
form strongly correlated states termed Wigner molecules, in which the Coulomb
interaction causes the electrons to become highly localized in space. By using
an effective model of Hubbard-type to describe these states, we investigate how
an oscillatory electric field can drive the dynamics of a two-electron Wigner
molecule held in a square quantum dot. We find that, for certain combinations
of frequency and strength of the applied field, the tunneling between various
charge configurations can be strongly quenched, and we relate this phenomenon
to the presence of anti-crossings in the Floquet quasi-energy spectrum. We
further obtain simple analytic expressions for the location of these
anti-crossings, which allows the effective parameters for a given quantum dot
to be directly measured in experiment, and suggests the exciting possibility of
using ac-fields to control the time evolution of entangled states in mesoscopic
devices.Comment: Replaced with version to be published in Phys. Rev.
Changes in Floquet state structure at avoided crossings: delocalization and harmonic generation
Avoided crossings are common in the quasienergy spectra of strongly driven
nonlinear quantum wells. In this paper we examine the sinusoidally driven
particle in a square potential well to show that avoided crossings can alter
the structure of Floquet states in this system. Two types of avoided crossings
are identified: on type leads only to temporary changes (as a function of
driving field strength) in Floquet state structure while the second type can
lead to permanent delocalization of the Floquet states. Radiation spectra from
these latter states show significant increase in high harmonic generation as
the system passes through the avoided crossing.Comment: 8 pages with 10 figures submitted to Physical Review
- …