948 research outputs found

    Senegalese academic says prevention is vital as West African countries battle the rise of radical Islam

    Get PDF
    Our series examining the Origins of Africa’s War of Terror continues with Senegalese academic Dr Bakary Sambe who says that a deep reform of education systems in the Sahelian countries is key to preventing the rapid rise of Islamic militancy in the region

    Recognition-mediated hydrogel swelling controlled by interaction with a negative thermoresponsive LCST polymer

    Get PDF
    Most polymeric thermoresponsive hydrogels contract upon heating beyond the lower critical solution temperature (LCST) of the polymers used. Herein, we report a supramolecular hydrogel system that shows the opposite temperature dependence. When the non-thermosesponsive hydrogel NaphtGel, containing dialkoxynaphthalene guest molecules, becomes complexed with the tetra cationic macrocyclic host CBPQT4+, swelling occurred as a result of host–guest complex formation leading to charge repulsion between the host units, as well as an osmotic contribution of chloride counter-ions embedded in the network. The immersion of NaphtGel in a solution of poly(N-isopropylacrylamide) with tetrathiafulvalene (TTF) end groups complexed with CBPQT4+ induced positive thermoresponsive behaviour. The LCST-induced dethreading of the polymer-based pseudorotaxane upon heating led to transfer of the CBPQT4+ host and a concomitant swelling of NaphtGel. Subsequent cooling led to reformation of the TTF-based host–guest complexes in solution and contraction of the hydrogel

    Coherent transport in a two-electron quantum dot molecule

    Get PDF
    We investigate the dynamics of two interacting electrons confined to a pair of coupled quantum dots driven by an external AC field. By numerically integrating the two-electron Schroedinger equation in time, we find that for certain values of the strength and frequency of the AC field we can cause the electrons to be localised within the same dot, in spite of the Coulomb repulsion between them. Reducing the system to an effective two-site model of Hubbard type and applying Floquet theory leads to a detailed understanding of this effect. This demonstrates the possibility of using appropriate AC fields to manipulate entangled states in mesoscopic devices on extremely short timescales, which is an essential component of practical schemes for quantum information processing.Comment: 4 pages, 3 figures; the section dealing with the perturbative treatment of the Floquet states has been substantially expanded to make it easier to follo

    Recurrence of fidelity in near integrable systems

    Full text link
    Within the framework of simple perturbation theory, recurrence time of quantum fidelity is related to the period of the classical motion. This indicates the possibility of recurrence in near integrable systems. We have studied such possibility in detail with the kicked rotor as an example. In accordance with the correspondence principle, recurrence is observed when the underlying classical dynamics is well approximated by the harmonic oscillator. Quantum revivals of fidelity is noted in the interior of resonances, while classical-quantum correspondence of fidelity is seen to be very short for states initially in the rotational KAM region.Comment: 13 pages, 6 figure

    Laser controlled molecular switches and transistors

    Full text link
    We investigate the possibility of optical current control through single molecules which are weakly coupled to leads. A master equation approach for the transport through a molecule is combined with a Floquet theory for the time-dependent molecule. This yields an efficient numerical approach to the evaluation of the current through time-dependent nano-structures in the presence of a finite external voltage. We propose tunable optical current switching in two- and three-terminal molecular electronic devices driven by properly adjusted laser fields, i.e. a novel class of molecular transistors.Comment: 11 pages, 4 figures, elsart.cls include

    Grid-based density functional calculation of many-electron systems

    Full text link
    Exploratory variational pseudopotential density functional calculations are performed for the electronic properties of many-electron systems in the 3D cartesian coordinate grid (CCG). The atom-centered localized gaussian basis set, electronic density and the two-body potentials are set up in the 3D cubic box. The classical Hartree potential is calculated accurately and efficiently through a Fourier convolution technique. As a first step, simple local density functionals of homogeneous electron gas are used for the exchange-correlation potential, while Hay-Wadt-type effective core potentials are employed to eliminate the core electrons. No auxiliary basis set is invoked. Preliminary illustrative calculations on total energies, individual energy components, eigenvalues, potential energy curves, ionization energies, atomization energies of a set of 12 molecules show excellent agreement with the corresponding reference values of atom-centered grid as well as the grid-free calculation. Results for 3 atoms are also given. Combination of CCG and the convolution procedure used for classical Coulomb potential can provide reasonably accurate and reliable results for many-electron systems.Comment: 17 pages, 1 figure, 6 tables, 34 reference

    Localization properties of driven disordered one-dimensional systems

    Full text link
    We generalize the definition of localization length to disordered systems driven by a time-periodic potential using a Floquet-Green function formalism. We study its dependence on the amplitude and frequency of the driving field in a one-dimensional tight-binding model with different amounts of disorder in the lattice. As compared to the autonomous system, the localization length for the driven system can increase or decrease depending on the frequency of the driving. We investigate the dependence of the localization length with the particle's energy and prove that it is always periodic. Its maximum is not necessarily at the band center as in the non-driven case. We study the adiabatic limit by introducing a phenomenological inelastic scattering rate which limits the delocalizing effect of low-frequency fields.Comment: Accepted for publication in European Physical Journal
    corecore