101 research outputs found

    Reflectance confocal microscopy of optical phantoms

    Get PDF
    A reflectance confocal scanning laser microscope (rCSLM) operating at 488-nm wavelength imaged three types of optical phantoms: (1) 100-nm-dia. polystyrene microspheres in gel at 2% volume fraction, (2) solid polyurethane phantoms (INO BiomimicTM), and (3) common reflectance standards (SpectralonTM). The noninvasive method measured the exponential decay of reflected signal as the focus (zf) moved deeper into the material. The two experimental values, the attenuation coefficient μ and the pre-exponential factor ρ, were mapped into the material optical scattering properties, the scattering coefficient μs and the anisotropy of scattering g. Results show that μs varies as 58, 8–24, and 130–200 cm-1 for phantom types (1), (2) and (3), respectively. The g varies as 0.112, 0.53–0.67, and 0.003–0.26, respectively

    Disorder-induced critical exponents near a ferromagnetic quantum critical point in Mn1−xCrxSi

    Get PDF
    We report the observation of critical behavior in Mn1−xCrxSi (0≤x≤1) close to a T = 0 K quantum critical point, consistent with the Belitz-Kirkpatrick-Vojta (BKV) theory of disordered metallic ferromagnets. The critical exponents are in good agreement with the theoretical predictions of the BKV theory in the preasymptotic limit. A non-Fermi liquid-like behavior is seen down to 200 mK in the transport and thermodynamic properties around the critical concentration xC = 0.2. Quantum criticality and self-consistency of the exponents is further confirmed using a scaling analysis of the magnetization and heat capacity data. A recovery to Fermi liquid-like behavior is displayed on moving away from the critical composition, as well as with the application of a magnetic field

    Anomalous thermal expansion of Sb2_2Te3_3 topological insulator

    Full text link
    We have investigated the temperature dependence of the linear thermal expansion along the hexagonal c axis (ΔL\Delta L), in-plane resistivity (ρ\rho), and specific heat (CpC_p) of the topological insulator Sb2_2Te3_3 single crystal. ΔL\Delta L exhibits a clear anomaly in the temperature region 204-236 K. The coefficient of linear thermal expansion α\alpha decreases rapidly above 204 K, passes through a deep minimum at around 225 K and then increases abruptly in the region 225-236 K. α\alpha is negative in the interval 221-228 K. The temperature dependence of both α\alpha and CpC_p can be described well by the Debye model from 2 to 290 K, excluding the region around the anomaly in α\alpha

    Spin-valve nature and giant coercivity of a ferrimagnetic spin semimetal Mn2_2IrGa

    Full text link
    Spin semimetals are amongst the most recently discovered new class of spintronic materials, which exhibit a band gap in one spin channel and semimetallic feature in the other, thus facilitating tunable spin transport. Here, we report Mn2_2IrGa to be a candidate material for spin semimetal along with giant coercivity and spin-valve characteristics using a combined experimental and theoretical study. The alloy crystallizes in an inverse Heusler structure (without any martensitic transition) with a para- to ferri-magnetic transition at TCT_\mathrm{C} \sim 243 K. It shows a giant coercive field of about 8.5 kOe (at 2 K). The negative temperature coefficient, relatively low magnitude and weak temperture dependance of electrical resistivity suggest the semimetallic character of the alloy. This is further supported by our specific heat measurement. Magnetoresistance (MR) confirms an irreversible nature (with its magnitude \sim1\%) along with a change of sign across the magnetic transition indicating the potentiality of Mn2_2IrGa in magnetic switching applications. In addition, asymmetric nature of MR in the positive and negative field cycles is indicative of spin-valve characteristics. Our ab-initio calculations confirm the inverse Heusler structure with ferrimagnetic ordering to be the lowest energy state, with a saturation magnetization of 2 μB\mu_\mathrm{B}. is found to be the easy magnetic axis with considerable magneto-crystalline anisotropy energy. A large positive Berry flux at/around Γ\Gamma point gives rise to an appreciable anomalous Hall conductivity (\sim-180 S/cm).Comment: Mn2IrGa, Inverse Heusler alloys, Giant Coercivity, Ferrimagnets, Spin Semimetal, Spin valve, Fleur, FLAPW, Spintronic

    Spin-flop quasi metamagnetic, anisotropic magnetic, and electrical transport behavior of Ho substituted kagome magnet ErMn6_6Sn6_6

    Full text link
    We report on the magnetic and electrical properties of a (Mn3_3Sn)2_2 triangular network kagome structured high quality Ho substituted ErMn6_6Sn6_6 single-crystal sample by magneto-transport measurements. Er0.5_{0.5}Ho0.5_{0.5}Mn6_6Sn6_6 orders antiferromagnetically at N\'{e}el temperature TNT_\mathrm{N} \sim 350 K followed by a ferrimagnetic (FiM) transition at TCT_\mathrm{C} \sim 114 K and spin-orientation transition at TtT_\mathrm{t} \sim 20 K. The field-manifestations of these magnetic phases in the \textit{ab}-basal plane and along the \textit{c}-axis are illustrated through temperature-field \textit{T-H} phase diagrams. In \textit{H}\parallel\textit{c}, narrow hysteresis between spin reorientation and field-induced FiM phases below TtT_\mathrm{t}, enhanced/strengthened FiM phase below TCT_\mathrm{C} and stemming of FiM phase out of strongly coexisting AFM and FiM phases below TNT_\mathrm{N} through a non-meta-magnetic transition are confirmed to arise from strong R-Mn sublattices interaction. In contrast, \textit{H}\parallel\textit{ab}-plane, between TNT_\mathrm{N} and TCT_\mathrm{C}, individually contributing R-Mn sublattices with weak antiferromagnetic interactions undergo a field-induced spin-flop quasi-metamagnetic transition to FiM state. The temperature dependent electrical resistivity suggests metallic nature with Fermi liquid behavior at low temperatures. Essentially, the current study stimulates interest to investigate the magnetic and electrical properties of mixed rare-earth layered kagome magnetic metals for possible novel and exotic behavior.Comment: 9 pages, 6 figure
    corecore