16 research outputs found

    How VASP enhances actin-based motility

    Get PDF
    The function of vasodilator-stimulated phosphoprotein (VASP) in motility is analyzed using a biomimetic motility assay in which ActA-coated microspheres propel themselves in a medium containing actin, the Arp2/3 complex, and three regulatory proteins in the absence or presence of VASP. Propulsion is linked to cycles of filament barbed end attachment-branching-detachment-growth in which the ActA-activated Arp2/3 complex incorporates at the junctions of branched filaments. VASP increases the velocity of beads. VASP increases branch spacing of filaments in the actin tail, as it does in lamellipodia in living cells. The effect of VASP on branch spacing of Arp2/3-induced branched actin arrays is opposed to the effect of capping proteins. However, VASP does not compete with capping proteins for binding barbed ends of actin filaments. VASP enhances branched actin polymerization only when ActA is immobilized on beads or on Listeria. VASP increases the rate of dissociation of the branch junction from immobilized ActA, which is the rate-limiting step in the catalytic cycle of site-directed filament branching

    Microtubules regulate disassembly of epithelial apical junctions

    Get PDF
    BACKGROUND: Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. RESULTS: Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. CONCLUSION: Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins

    Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disruption of epithelial cell-cell adhesions represents an early and important stage in tumor metastasis. This process can be modeled <it>in vitro </it>by exposing cells to chemical tumor promoters, phorbol esters and octylindolactam-V (OI-V), known to activate protein kinase C (PKC). However, molecular events mediating PKC-dependent disruption of epithelial cell-cell contact remain poorly understood. In the present study we investigate mechanisms by which PKC activation induces disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium.</p> <p>Results</p> <p>Exposure of HPAF-II human pancreatic adenocarcinoma cell monolayers to either OI-V or 12-O-tetradecanoylphorbol-13-acetate caused rapid disruption and internalization of AJs and TJs. Activity of classical PKC isoenzymes was responsible for the loss of cell-cell contacts which was accompanied by cell rounding, phosphorylation and relocalization of the F-actin motor nonmuscle myosin (NM) II. The OI-V-induced disruption of AJs and TJs was prevented by either pharmacological inhibition of NM II with blebbistatin or by siRNA-mediated downregulation of NM IIA. Furthermore, AJ/TJ disassembly was attenuated by inhibition of Rho-associated kinase (ROCK) II, but was insensitive to blockage of MLCK, calmodulin, ERK1/2, caspases and RhoA GTPase.</p> <p>Conclusion</p> <p>Our data suggest that stimulation of PKC disrupts epithelial apical junctions via ROCK-II dependent activation of NM II, which increases contractility of perijunctional actin filaments. This mechanism is likely to be important for cancer cell dissociation and tumor metastasis.</p

    Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review

    No full text
    Sodium-ion batteries (SIBs) have demonstrated noticeable development since the 2010s, being complementary to the lithium-ion technology in predominantly large-scale application niches. The projected SIB market growth will inevitably lead to the generation of tons of spent cells, posing a notorious issue for proper battery lifecycle management, which requires both the establishment of a regulatory framework and development of technologies for recovery of valuable elements from battery waste. While lithium-ion batteries are mainly based on layered oxides and lithium iron phosphate chemistries, the variety of sodium-ion batteries is much more diverse, extended by a number of other polyanionic families (crystal types), such as NASICON (Na3V2(PO4)3), Na3V2(PO4)2F3−yOy, (0 ≤ y ≤ 2), KTiOPO4-type AVPO4X (A—alkali metal cation, X = O, F) and β-NaVP2O7, with all of them relying on vanadium and phosphorous—critical elements in a myriad of industrial processes and technologies. Overall, the greater chemical complexity of these vanadium-containing phosphate materials highlights the need for designing specific recycling approaches based on distinctive features of vanadium and phosphorus solution chemistry, fine-tuned for the particular electrodes used. In this paper, an overview of recycling methods is presented with a focus on emerging chemistries for SIBs

    Mechanism of IFN-γ-induced Endocytosis of Tight Junction Proteins: Myosin II-dependent Vacuolarization of the Apical Plasma Membrane

    No full text
    Disruption of epithelial barrier by proinflammatory cytokines such as IFN-γ represents a major pathophysiological consequence of intestinal inflammation. We have previously shown that IFN-γ increases paracellular permeability in model T84 epithelial cells by inducing endocytosis of tight junction (TJ) proteins occludin, JAM-A, and claudin-1. The present study was designed to dissect mechanisms of IFN-γ-induced endocytosis of epithelial TJ proteins. IFN-γ treatment of T84 cells resulted in internalization of TJ proteins into large actin-coated vacuoles that originated from the apical plasma membrane and resembled the vacuolar apical compartment (VAC) previously observed in epithelial cells that lose cell polarity. The IFN-γ dependent formation of VACs required ATPase activity of a myosin II motor but was not dependent on rapid turnover of F-actin. In addition, activated myosin II was observed to colocalize with VACs after IFN-γ exposure. Pharmacological analyses revealed that formation of VACs and endocytosis of TJ proteins was mediated by Rho-associated kinase (ROCK) but not myosin light chain kinase (MLCK). Furthermore, IFN-γ treatment resulted in activation of Rho GTPase and induced expressional up-regulation of ROCK. These results, for the first time, suggest that IFN-γ induces endocytosis of epithelial TJ proteins via RhoA/ROCK-mediated, myosin II-dependent formation of VACs
    corecore