7 research outputs found
Recommended from our members
Perception-Aware Optimisation Methodologies for Quantum Dot Based Displays and Lighting
Human colour vision acuity is limited. This presents opportunities to leverage these perceptual limits to achieve engineering optimisations for devices and systems that interact with the human vision system. This dissertation presents the results of few investigations we carried out into quantifying these limits and several optimisation methodologies that we devised. The first step in this process is to quantify the acuity of human colour vision. We obtained a large corpus of colour matching data from a mobile video game called Specimen. We examine what questions about human vision this dataset allows us to answer and explore global statistics about colour vision based on this data on 41,000 players from 175 countries. We show that we can use the information in this dataset to infer potential candidate functions for the spectral sensitivities of each person in the dataset. The human eye acts like a many to one function; quantifiably different spectra can look like the same colour. This is referred to as metamerism. From a device perspective, different spectra consume different amounts of energy to generate. We show that we can use these two properties to elicit the same colour sensation using less energy. In the colour samples we evaluated, we show that we can achieve up to 10 times less power consumption while achieving a colour match. Given that one cannot change the emission spectrum of a display after fabrication, we propose the use of a multi-primary colour display to achieve this. We present two indices for quantifying the metameric capacity of such a display and its ability to save energy. The emission spectrum of a quantum dot (QD) based device is very narrow. Previous work in the literature suggested that narrow bandwidth spectra can lead to observer metameric breakdown; different observers disagreeing on the perceived ‘colour’ of a spectrum. We show that this might not be the case, using modern colour science tools, and show how metameric breakdown in a display could be minimised by carefully choosing the primary emission wavelengths. The limited colour acuity of human vision implies that people cannot notice small differences in colour. This fact has been used to create approximate colour transformation algorithms that subtly change colours in images such that they consume less energy when displayed on an emissive pixel display without causing unacceptable visual artefacts. We conducted a user study to gather information about the effect of one such colour transform called Crayon. We present a method for effectively picking the optimal transform parameters for Crayon, based on the user study results. The method presented calculates these parameters based on the properties of the image being transformed such that the power saving can be maximised while minimising the loss of image quality. The user study results show that we can achieve up to 50% power saving with a majority of the study participants reporting a negligible degradation in image quality in the transformed images. We additionally investigate a hypothesis that was presented stating that images with large amounts of highly luminous pixels cause increased power consumption in OLED displays due to localised display heating. We show that this hypothesis is wrong. We also investigate if sub-pixel rendering in Pentile displays can be used to reduce display power consumption by intentionally turning off random sub-pixels. However, we present a negative result showing that even single-pixel artefacts are observable on the test platform and thus, this cannot be used to improve display power efficiency. The narrow-band optical emissions of QD based devices mixed with their ability to be fabricated through solution processing can be used to mix multiple QDs together to build devices that generate arbitrary spectral shapes. We show how to use this property in an numerical optimisation based design framework to create lighting devices with a high colour rendering index (CRI). We evaluate the effects of different cost functions and initialisation strategies, and show that, we are able to design devices with a CRI > 96 using only four different QD primaries. We use a charge-transport based simulator to asses the electric properties of the designed devices. We also showcase initial work done on a modular software interface and a material library we developed for this simulator.EPSRC DTP studentship award RG84040:EP/N509620/
Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes
Abstracts: Quantum dot light-emitting diodes (QD-LEDs) are considered as competitive candidate for next-generation displays or lightings. Recent advances in the synthesis of core/shell quantum dots (QDs) and tailoring procedures for achieving their high quantum yield have facilitated the emergence of high-performance QD-LEDs. Meanwhile, the charge-carrier dynamics in QD-LED devices, which constitutes the remaining core research area for further improvement of QD-LEDs, is, however, poorly understood yet. Here, we propose a charge transport model in which the charge-carrier dynamics in QD-LEDs are comprehensively described by computer simulations. The charge-carrier injection is modelled by the carrier-capturing process, while the effect of electric fields at their interfaces is considered. The simulated electro-optical characteristics of QD-LEDs, such as the luminance, current density and external quantum efficiency (EQE) curves with varying voltages, show excellent agreement with experiments. Therefore, our computational method proposed here provides a useful means for designing and optimising high-performance QD-LED devices
Recommended from our members
Content-Aware Automated Parameter Tuning for Approximate Color Transforms
There are numerous approximate color transforms reported in the literature that aim to reduce display power consumption by imperceptibly changing the color content of displayed images. To be practical, these techniques need to be content-aware in picking transformation parameters to preserve perceptual quality. This work presents a computationally-efficient method for calculating a parameter lower bound for approximate color transform parameters based on the content to be transformed. We conduct a user study with 62 participants and 6,400 image pair comparisons to derive the proposed solution. We use the user study results to predict this lower bound reliably with a 1.6% mean squared error by using simple image-color-based heuristics. We show that these heuristics have Pearson and Spearman rank correlation coefficients greater than 0.7 (p<0.01) and that our model generalizes beyond the data from the user study. The user study results also show that the color transform is able to achieve up to 50% power saving with most users reporting negligible visual impairment.Alan Turing Institut
Recommended from our members
Content-Aware Automated Parameter Tuning for Approximate Color Transforms
Optoelectronic System and Device Integration for Quantum-Dot Light-Emitting Diode White Lighting with Computational Design Framework
We propose a computational design framework to design the architecture of a white lighting system having multiple pixelated patterns of electric-field-driven quantum dot light-emitting diodes. The quantum dot of the white lighting system has been optimised by a system-level combinatorial colour optimisation process with the Nelder-Mead algorithm used for machine learning. The layout of quantum dot patterns is designed precisely using rigorous device-level charge transport simulation with an electric-field dependent charge injection model. A theoretical maximum of 97% colour rendering index has been achieved with red, green, cyan, and blue quantum dot light-emitting diodes as primary colours. The white lighting system has been fabricated using the transfer printing technique to validate the computational design framework. It exhibits excellent lighting performance of 92% colour rendering index and wide colour temperature variation from 1612 K to 8903 K with only the four pixelated quantum dots as primary.UK Engineering and Physical Sciences Research Council (EPSRC) project EP/P027628/1
Smart Flexible Quantum Dot Lighting’ and by the European Union under H2020 grant agreement No 685758 ‘1D-NEON’
EPSRC through the doctoral training partnership (DTP) scheme, studentship award EP/N509620/
Recommended from our members
Technology progress on quantum dot light-emitting diodes for next-generation displays.
Quantum dot light-emitting diodes (QD-LEDs) are widely recognised as great alternatives to organic light-emitting diodes (OLEDs) due to their enhanced performances. This focus article surveys the current progress on the state-of-the-art QD-LED technology including material synthesis, device optimization and innovative fabrication processes. A discussion on the material synthesis of core nanocrystals, shell layers and surface-binding ligands is presented for high photoluminescence quantum yield (PLQY) quantum dots (QDs) using heavy-metal free materials. The operational principles of several types of QD-LED device architectures are also covered, and the recent evolution of device engineering technologies is investigated. By exploring the fabrication process for pixel-patterning of QD-LEDs on an active-matrix backplane for full-colour display applications, we anticipate further improvement in device performance for the commercialisation of next-generation displays.H2020 grant agreement No. 685758 ‘1D-NEON