16 research outputs found
Hepatic hydatid disease: four case reports
We report four cases who were referred to Mansoura University Teaching Hospital, Egypt suffering from abdominal pain and gastrointestinal manifestations. The patients' history was unremarkable, except that they had contact with dogs and live in rural communities. Laboratory findings showed peripheral blood eosinophilia, leucocytosis, and elevated liver enzymes. Serological tests were positive in three cases. Ultrasonography showed well-circumscribed cystic masses in the liver. Diagnosis of hydatid cysts was confirmed by computed tomography (CT). Surgical treatment along with chemotherapy was performed and all patients recovered well. The results of these cases support the notion that CT scan can led to increased clarity, regarding surgical management, because of discordance between radiographic and laboratory findings
Anti-inflammatory and gastroprotective potential of leaf essential oil of Cinnamomum glanduliferum in ethanol-induced rat experimental gastritis
Context: Nothing could be found in the literature concerning Cinnamomum glanduliferum (Wall) Meissn (Lauraceae) bark (CG) in Egypt. Objective: To investigate CG volatile oil chemically and its anti-inflammatory and gastroprotective effects. Materials and methods: Essential oils were investigated by GC-MS. Leaves oil was assessed at doses of 250, 500 and 1000 mg/kg for its anti-inflammatory effect against carrageenan-induced rat oedema model. Serum inflammation markers were measured. The gastro-protective effect of the same doses of the volatile oil was also tested in ethanol-induced non-ulcerative gastritis model in rats. Stomach oxidative stress markers were examined following 1 h after intragastric ethanol administration. Results: Twenty-five and 20 compounds were identified from leaf and branch oils, respectively (98.85 and 99.13%). The major ones were: eucalyptol (59.44%; 55.74%), sabinene (14.99%; 7.12%), α-terpineol (6.44%; 9.81%), α-pinene (5.27%; 4.71%). Following 4 h of treatment leaves volatile oil at doses of 250, 500 and 1000 mg/kg significantly reduced paw volume to 94, 82 and 69%, respectively. The same doses significantly reduced COX-2 activity to 73.8, 50.7 and 21.4 nmol/min/mL, respectively. A significant reduction of PGE2 concentration was observed (2.95 ± 0.2, 2.45 ± 0.15 and 1.75 ± 0.015 pg/mL). CG oil exhibited a significant modulatory effect on ethanol-induced gastritis in rats as the level of NO reduced to 32, 37 and 41 μM nitrate/g and also a significant inhibition of lipid peroxidation was observed via reduction of MDA concentration (1.15, 1.11 and 1.04 nmol/g). Conclusion: CG volatile oil exhibited an anti-inflammatory effect and protected against ethanol-induced non-ulcerative gastritis
Potential role of Drug Repositioning Strategy (DRS) for management of tauopathy
Tauopathy is a term that has been used to represent a pathological condition in which hyperphosphorylated tau protein aggregates in neurons and glia which results in neurodegeneration, synapse loss and dysfunction and cognitive impairments. Recently, drug repositioning strategy (DRS) becomes a promising field and an alternative approach to advancing new treatments from actually developed and FDA approved drugs for an indication other than the indication it was originally intended for. This paradigm provides an advantage because the safety of the candidate compound has already been established, which abolishes the need for further preclinical safety testing and thus substantially reduces the time and cost involved in progressing of clinical trials. In the present review, we focused on correlation between tauopathy and common diseases as type 2 diabetes mellitus and the global virus COVID-19 and how tau pathology can aggravate development of these diseases in addition to how these diseases can be a risk factor for development of tauopathy. Moreover, correlation between COVID-19 and type 2 diabetes mellitus was also discussed. Therefore, repositioning of a drug in the daily clinical practice of patients to manage or prevent two or more diseases at the same time with lower side effects and drug-drug interactions is a promising idea. This review concluded the results of pre-clinical and clinical studies applied on antidiabetics, COVID-19 medications, antihypertensives, antidepressants and cholesterol lowering drugs for possible drug repositioning for management of tauopathy
'Methyl palmitate attenuates adjuvant induced arthritis in rats by decrease of CD68 synovial macrophages
The study was designed to investigate the potential anti-arthritic effects of methyl palmitate in an adjuvant arthritis model in rats that shares many histopathological similarities with human RA. The underlying mechanism and its effect on CD68 macrophages were investigated, as a further argument to its possible efficacy in RA treatment. A normal control group was injected only with saline, arthritic group, and three treatment groups with CFA induced arthritis received methyl palmitate (MP) at three different doses (75, 150, 300 mg/kg/week for 3 weeks, intraperitoneal). The degree of ipsilateral paw swelling, ankle diameter, spleen index, thymus index and the expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β were measured. In addition, the underlying molecular mechanism was investigated using CD68 expression. Methyl palpitate significantly and dose dependently decreased the arthritic symptoms as measured by ipsilateral paw volume and ankle diameter. It showed no effect on body weight but significantly decreased splenic, thymus index, serum TNF-α and IL-1β. CD68 macrophages expression and the overall synovial inflammatory cellularity were halted. Methyl palmitate exhibits significant anti-inflammatory and exerts a potential anti-arthritic effect in a rat model of adjuvant induced arthritis. Furthermore, it inhibits expression of synovial CD68 macrophage that validate its therapeutic potential adjuvant arthritis
Glimepiride mitigates tauopathy and neuroinflammation in P301S transgenic mice: role of AKT/GSK3β signaling
Background and objective: Tauopathy is a group of neurodegenerative diseases in which the pathogenesis processes are related to tau protein. The imbalances between the activities of kinases and phosphatases of tau protein lead to tau hyperphosphorylation and subsequent neurodegeneration. Numerous studies suggest a strong linkage between type 2 diabetes mellitus (T2D) and neurodegenerative diseases. Therefore, finding a drug with a dual therapeutic activity against T2D and neuroprotective will be a promising idea. Hence, the potential neuroprotective effect of Glimepiride (GPD) against tauopathy was evaluated in the current study. Methods: P301S mice model was employed for tauopathy and C57BL/6 wild type mice (WT) was used as control. Phosphorylated and acetylated tau protein levels was assessed in cortex and hippocampus by western blot. Effect of GPD on tauopathy related enzymes, neuroinflammation, apoptotic markers were evaluated. Furthermore, the neuroprotective effects against anxiety like behavior and motor impairment was analyzed using Parallel rod floor and Open field tests. Results: GPD significantly ameliorates motor impairment, anxiety like behavior and neurodegeneration in P301S mice. Phosphorylated tau and acetylated tau were significantly decreased in both cortex and hippocampus of P301S mice via decreasing GSK3β, increasing ratio of phosphorylated-AKT to total-AKT, increasing PP2A and normalization of CDK5 levels. Furthermore, GPD treatment also decreased neuroinflammation and apoptosis by reducing NF-kB, TNF-α and caspase 3 levels
PICEATANNOL AMELIORATES CISPLATIN-INDUCED HISTOLOGICAL AND BIOCHEMICAL ALTERATIONS IN RATS KIDNEY
Objective: The present study was designed to investigate the effect of different doses of piceatannol (PIC) on cisplatin-induced biochemical and histological alterations in rat kidney.Methods: Male Wistar rats received a single intraperitoneal (i. p.) injection of cisplatin (7 mg/kg). PIC was given in different daily doses (5, 10 and 20 mg/kg) i. p., for seven days, starting two days before cisplatin injection. Nephrotoxicity was evaluated by means of measurement of blood urea nitrogen (BUN), serum creatinine and histopathological examination of the kidney. We also investigated the antioxidant effect of the most effective dose of PIC by measuring reduced glutathione (GSH) and lipid peroxides levels. Moreover, the ability of PIC to affect nuclear factor kappa B (NF-kB) expression was determined by immunohistochemical analysis.Results: A single dose of cisplatin (7 mg/kg) significantly increased BUN and creatinine levels, as well as relative kidney weight, compared to the control group. In addition, significant histopathological alterations including tubular necrosis, hemorrhage and casts formation were observed. PIC was given in different doses (5, 10 and 20 mg/kg) for 7 d, starting 2 d before cisplatin injection. PIC dose 10 mg/kg was the most effective in preventing these alterations. PIC significantly increased GSH level and decreased lipids peroxidation compared to cisplatin group. Moreover, PIC significantly mitigated cisplatin-induced expression of NF-kB.Conclusion: PIC has the potential to ameliorate cisplatin-induced renal injury.Â
Intravascular Schistosoma mansoni Cleave the Host Immune and Hemostatic Signaling Molecule Sphingosine-1-Phosphate via Tegumental Alkaline Phosphatase
Schistosomes are parasitic flatworms that infect the vasculature of >200 million people around the world. These long-lived parasites do not appear to provoke blood clot formation or obvious inflammation around them in vivo. Proteins expressed at the host–parasite interface (such as Schistosoma mansoni alkaline phosphatase, SmAP) are likely key to these abilities. SmAP is a glycoprotein that hydrolyses the artificial substrate p-nitrophenyl phosphate in a reaction that requires Mg2+ and at an optimal pH of 9. SmAP additionally cleaves the nucleoside monophosphates AMP, CMP, GMP, and TMP, all with a similar Km (~600–650 μM). Living adult worms, incubated in murine plasma for 1 h, alter the plasma metabolome; a decrease in sphingosine-1-phosphate (S1P) is accompanied by an increase in the levels of its component parts—sphingosine and phosphate. To test the hypothesis that schistosomes can hydrolyze S1P (and not merely recruit or activate a host plasma enzyme with this function), living intravascular life-stage parasites were incubated with commercially obtained S1P and cleavage of S1P was detected. Parasites whose SmAP gene was suppressed using RNAi were impaired in their ability to cleave S1P compared to controls. In addition, recombinant SmAP hydrolyzed S1P. Since extracellular S1P plays key roles in controlling inflammation and platelet aggregation, we hypothesize that schistosome SmAP, by degrading S1P, can regulate the level of this bioactive lipid in the environment of the parasites to control these processes in the worm’s local environment. This is the first report of any parasite being able to cleave S1P