5 research outputs found

    Dynamic Changes of Circulating Tumor DNA Predict Clinical Outcome in Patients With Advanced Non-Small-Cell Lung Cancer Treated With Immune Checkpoint Inhibitors

    Get PDF
    PURPOSE Immune checkpoint inhibitors (ICIs) are increasingly being used in non-small-cell lung cancer (NSCLC), yet biomarkers predicting their benefit are lacking. We evaluated if on-treatment changes of circulating tumor DNA (ctDNA) from ICI start (t0) to after two cycles (t1) assessed with a commercial panel could identify patients with NSCLC who would benefit from ICI. PATIENTS AND METHODS The molecular ctDNA response was evaluated as a predictor of radiographic tumor response and long-term survival benefit of ICI. To maximize the yield of ctDNA detection, de novo mutation calling was performed. Furthermore, the impact of clonal hematopoiesis (CH)-related variants as a source of biologic noise was investigated. RESULTS After correction for CH-related variants, which were detected in 75 patients (44.9%), ctDNA was detected in 152 of 167 (91.0%) patients. We observed only a fair agreement of the molecular and radiographic response, which was even more impaired by the inclusion of CH-related variants. After exclusion of those, a ≥ 50% molecular response improved progression-free survival (10 v 2 months; hazard ratio [HR], 0.55; 95% CI, 0.39 to 0.77; P =.0011) and overall survival (18.4 v 5.9 months; HR, 0.44; 95% CI, 0.31 to 0.62; P,.0001) compared with patients not achieving this end point. After adjusting for clinical variables, ctDNA response and STK11/KEAP1 mutations (HR, 2.08; 95% CI, 1.4 to 3.0; P,.001) remained independent predictors for overall survival, irrespective of programmed death ligand-1 expression. A landmark survival analysis at 2 months (n = 129) provided similar results. CONCLUSION On-treatment changes of ctDNA in plasma reveal predictive information for long-term clinical benefit in ICI-treated patients with NSCLC. A broader NSCLC patient coverage through de novo mutation calling and the use of a variant call set excluding CH-related variants improved the classification of molecular responders, but had no significant impact on survival

    Accelerating the Development and Validation of Liquid Biopsy for Early Cancer Screening and Treatment Tailoring

    No full text
    Liquid biopsy (LB) is a minimally invasive method which aims to detect circulating tumor-derived components in body fluids. It provides an alternative to current cancer screening methods that use tissue biopsies for the confirmation of diagnosis. This paper attempts to determine how far the regulatory, policy, and governance framework provide support to LB implementation into healthcare systems and how the situation can be improved. For that reason, the European Alliance for Personalised Medicine (EAPM) organized series of expert panels including different key stakeholders to identify different steps, challenges, and opportunities that need to be taken to effectively implement LB technology at the country level across Europe. To accomplish a change of patient care with an LB approach, it is required to establish collaboration between multiple stakeholders, including payers, policymakers, the medical and scientific community, and patient organizations, both at the national and international level. Regulators, pharma companies, and payers could have a major impact in their own domain. Linking national efforts to EU efforts and vice versa could help in implementation of LB across Europe, while patients, scientists, physicians, and kit manufacturers can generate a pull by undertaking more research into biomarkers
    corecore