6 research outputs found
A combined 3D-QSAR and docking studies for the In-silico prediction of HIV-protease inhibitors
BACKGROUND: Tremendous research from last twenty years has been pursued to cure human life against HIV virus. A large number of HIV protease inhibitors are in clinical trials but still it is an interesting target for researchers due to the viral ability to get mutated. Mutated viral strains led the drug ineffective but still used to increase the life span of HIV patients. RESULTS: In the present work, 3D-QSAR and docking studies were performed on a series of Danuravir derivatives, the most potent HIV- protease inhibitor known so far. Combined study of 3D-QSAR was applied for Danuravir derivatives using ligand-based and receptor-based protocols and generated models were compared. The results were in good agreement with the experimental results. Additionally, docking analysis of most active 32 and least active 46 compounds into wild type and mutated protein structures further verified our results. The 3D-QSAR and docking results revealed that compound 32 bind efficiently to the wild and mutated protein whereas, sufficient interactions were lost in compound 46. CONCLUSION: The combination of two computational techniques would helped to make a clear decision that compound 32 with well inhibitory activity bind more efficiently within the binding pocket even in case of mutant virus whereas compound 46 lost its interactions on mutation and marked as least active compound of the series. This is all due to the presence or absence of substituents on core structure, evaluated by 3D-QSAR studies. This set of information could be used to design highly potent drug candidates for both wild and mutated form of viruses
Identification of Potent Anti-immunogenic Agents Through Virtual Screening, 3D-QSAR Studies, and in vitro Experiments
A wealth of literature has highlighted the discovery of various immune modulators, frequently used in clinical practice, yet associated with numerous drawbacks. In light of this pharmacological deficiency, medical scientists are motivated to develop new immune modulators with minimized adverse effects yet retaining the improved therapeutic potential. T-cell differentiation and growth are central to human defense and are regulated by interleukin-2 (IL-2), an immune-modulatory cytokine. However, scientific investigation is hindered due to its flat binding site and widespread hotspot residues. In this regard, a prompt and logical investigation guided by integrated computational techniques was undertaken to unravel new and potential leads against IL-2. In particular, the combination of score-based and pharmacophore-based virtual screening approaches were employed, reducing the data from millions of small molecules to a manageable number. Subsequent docking and 3D-QSAR prediction via CoMFA further helped remove false positives from the data. The reliability of the model was assessed via standard metrics, which explain the model’s fitness and the robustness of the model in predicting the activity of new compounds. The extensive virtual screening herein led to the identification of a total of 24 leads with potential anti-IL-2 activity. Furthermore, the theoretical findings were corroborated with in vitro testing, further endorsing the anti-inflammatory potential of the identified leads