42 research outputs found

    An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction

    Get PDF
    Defective cardiac function during sepsis has been referred to as “cardiomyopathy of sepsis.” It is known that sepsis leads to intensive activation of the complement system. In the current study, cardiac function and cardiomyocyte contractility have been evaluated in rats after cecal ligation and puncture (CLP). Significant reductions in left ventricular pressures occurred in vivo and in cardiomyocyte contractility in vitro. These defects were prevented in CLP rats given blocking antibody to C5a. Both mRNA and protein for the C5a receptor (C5aR) were constitutively expressed on cardiomyocytes; both increased as a function of time after CLP. In vitro addition of recombinant rat C5a induced dramatic contractile dysfunction in both sham and CLP cardiomyocytes, but to a consistently greater degree in cells from CLP animals. These data suggest that CLP induces C5aR on cardiomyocytes and that in vivo generation of C5a causes C5a–C5aR interaction, causing dysfunction of cardiomyocytes, resulting in compromise of cardiac performance

    Missense Variant in MAPK Inactivator PTPN5 Is Associated with Decreased Severity of Post-Burn Hypertrophic Scarring.

    No full text
    BACKGROUND:Hypertrophic scarring (HTS) is hypothesized to have a genetic mechanism, yet its genetic determinants are largely unknown. The mitogen-activated protein kinase (MAPK) pathways are important mediators of inflammatory signaling, and experimental evidence implicates MAPKs in HTS formation. We hypothesized that single-nucleotide polymorphisms (SNPs) in MAPK-pathway genes would be associated with severity of post-burn HTS. METHODS:We analyzed data from a prospective-cohort genome-wide association study of post-burn HTS. We included subjects with deep-partial-thickness burns admitted to our center who provided blood for genotyping and had at least one Vancouver Scar Scale (VSS) assessment. After adjusting for HTS risk factors and population stratification, we tested MAPK-pathway gene SNPs for association with the four VSS variables in a joint regression model. In addition to individual-SNP analysis, we performed gene-based association testing. RESULTS:Our study population consisted of 538 adults (median age 40 years) who were predominantly White (76%) males (71%) admitted to our center from 2007-2014 with small-to-moderate-sized burns (median burn size 6% total body surface area). Of 2,146 SNPs tested, a rare missense variant in the PTPN5 gene (rs56234898; minor allele frequency 1.5%) was significantly associated with decreased severity of post-burn HTS (P = 1.3×10-6). In gene-based analysis, PTPN5 (P = 1.2×10-5) showed a significant association and BDNF (P = 9.5×10-4) a borderline-significant association with HTS severity. CONCLUSIONS:We report PTPN5 as a novel genetic locus associated with HTS severity. PTPN5 is a MAPK inhibitor expressed in neurons, suggesting a potential role for neurotrophic factors and neuroinflammatory signaling in HTS pathophysiology

    The Role of Lipopolysaccharide Structure in Monocyte Activation and Cytokine Secretion

    No full text
    BackgroundThe lipopolysaccharide (LPS) molecule is composed of a hydrophobic lipid region (Lipid A), an oligosaccharide core, and an O-Antigen chain. Lipid A has been described as the molecular region responsible for inducing activation of immune cells. We hypothesize that the O-Antigen plays a critical role in the activation and responsiveness of mononuclear cell immune function.MethodsPeripheral blood mononuclear cells (PBMCs) from healthy volunteers were stimulated with LPS, LPS with attenuated O-Antigen (RF5), or Lipid A (DPL), which lacks an O-Antigen. Selected cells were pretreated with a blocking antibody to CD14. Western blots were performed to determine activation of mitogen-activated protein kinases (MAPK) p38, ERK, and JNK at selected time-points. RNA was extracted for RT-PCR quantification of TNF-α and IL-10 gene transcription. Supernatants were harvested and analyzed by ELISA for tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10).ResultsLPS elicited maximal response, including phosphorylation of p38, ERK, and JNK, synthesis of TNF-α and IL-10 mRNA, and secretion of TNF-α and IL-10. Stimulation with RF5 activated the same pathways to a lesser degree. DPL led to increased phosphorylation of p38 and ERK and increased secretion of IL-10. CD14 blockade was associated with a significant decrease in cytokine secretion by LPS, and abolished cytokine secretion in cells stimulated with RF5 or DPL.ConclusionsStructural variants of LPS activate monocytes differentially. The complete O-Antigen is important for maximal activation of MAPK, cytokine synthesis, and cytokine secretion. LPS with attenuated O-Antigen and Lipid A activate only certain components of these pathways. LPS with a complete O-Antigen stimulates cytokine secretion that is partially independent of CD14, but shortening or removal of the O-Antigen inhibits this secretion

    The Role of Lipopolysaccharide Structure in Monocyte Activation and Cytokine Secretion

    No full text
    BACKGROUND: The lipopolysaccharide (LPS) molecule is composed of a hydrophobic lipid region (Lipid A), an oligosaccharide core, and an O-Antigen chain. Lipid A has been described as the molecular region responsible for inducing activation of immune cells. We hypothesize that the O-Antigen plays a critical role in the activation and responsiveness of mononuclear cell immune function. METHODS: Peripheral blood mononuclear cells (PBMCs) from healthy volunteers were stimulated with LPS, LPS with attenuated O-Antigen (RF5), or Lipid A (DPL), which lacks an O-Antigen. Selected cells were pre-treated with a blocking antibody to CD14. Western blots were performed to determine activation of mitogen activated protein kinases (MAPK) p38, ERK, and JNK at selected time-points. RNA was extracted for RT-PCR quantification of TNF-α and IL-10 gene transcription. Supernatants were harvested and analyzed by ELISA for tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10). RESULTS: LPS elicited maximal response, including phosphorylation of p38, ERK, and JNK, synthesis of TNF-α and IL-10 mRNA, and secretion of TNF-α and IL-10. Stimulation with RF5 activated the same pathways to a lesser degree. DPL led to increased phosphorylation of p38 and ERK and increased secretion of IL-10. CD14 blockade was associated with a significant decrease in cytokine secretion by LPS, and abolished cytokine secretion in cells stimulated with RF5 or DPL. CONCLUSIONS: Structural variants of LPS activate monocytes differentially. The complete O-Antigen is important for maximal activation of MAPK, cytokine synthesis, and cytokine secretion. LPS with attenuated O-Antigen and Lipid A activate only certain components of these pathways. LPS with a complete O-Antigen stimulates cytokine secretion which is partially independent of CD14, but shortening or removal of the O-Antigen inhibits this secretion

    Porphyromonas gingivalis Lipopolysaccharide Is Both Agonist and Antagonist for p38 Mitogen-Activated Protein Kinase Activation

    No full text
    Lipopolysaccharide (LPS) is a key inflammatory mediator. It has been proposed to function as an important molecule that alerts the host of potential bacterial infection. Although highly conserved, LPS contains important structural differences among different bacterial species that can significantly alter host responses. For example, LPS obtained from Porphyromonas gingivalis, an etiologic agent for periodontitis, evokes a highly unusual host cell response. Human monocytes respond to this LPS by the secretion of a variety of different inflammatory mediators, while endothelial cells do not. In addition, P. gingivalis LPS inhibits endothelial cell expression of E-selectin and interleukin 8 (IL-8) induced by other bacteria. In this report the ability of P. gingivalis LPS to activate p38 mitogen-activated protein (MAP) kinase was investigated. It was found that p38 MAP kinase activation occurred in response to P. gingivalis LPS in human monocytes. In contrast, no p38 MAP kinase activation was observed in response to P. gingivalis LPS in human endothelial cells or CHO cells transfected with human Toll-like receptor 4 (TLR-4). In addition, P. gingivalis LPS was an effective inhibitor of Escherichia coli-induced p38 MAP kinase phosphorylation in both endothelial cells and CHO cells transfected with human TLR-4. These data demonstrate that P. gingivalis LPS activates the LPS-associated p38 MAP kinase in monocytes and that it can be an antagonist for E. coli LPS activation of p38 MAP kinase in endothelial and CHO cells. These data also suggest that although LPS is generally considered a bacterial component that alerts the host to infection, LPS from P. gingivalis may selectively modify the host response as a means to facilitate colonization

    Delayed topical p38 MAPK inhibition attenuates full-thickness burn wound inflammatory signaling.

    No full text
    Inflammatory signaling pathways, such as p38 mitogen-activated protein kinase (MAPK) play a central role in host responses to injury. In previous studies by the authors, topical p38 MAPK inhibitors effectively attenuated inflammatory signaling in a partial-thickness scald burn model, when applied to the burn wound immediately after injury. However, clinically relevant full-thickness scald burn wounds may act as a barrier to topical immune modulators, and delayed application of topical p38 MAPK inhibitors may not be effective. In this study, the authors evaluate the efficacy of topical p38 MAPK inhibition on full-thickness scald burns with immediate and delayed treatment. C57/BL6 mice received Sham or 30% TBSA full-thickness scald burn injury. After injury, the burn wounds were treated with a topical p38 MAPK inhibitor or vehicle. The treatment group received topical p38 MAPK inhibitor either immediately after burn or 4 hours (delayed) after injury. All animals were killed at 12 or 24 hours. Burn wounds underwent histological analyses. Skin and plasma were analyzed by enzyme-linked immunosorbent assay or real-time quantitative polymerase chain reaction for cytokine expression. Full-thickness scald burns resulted from immersion in 62°C water for 25 seconds. Topical p38 MAPK inhibitor attenuated dermal interleukin (IL)-6, MIP-2, and IL-1β expression and plasma IL-6 and MIP-2 cytokine expression. In addition, delayed application of topical p38 MAPK inhibitors significantly reduced dermal and plasma cytokine expression compared with vehicle control. Topical p38 MAPK inhibitors remain potent in reducing full-thickness burn wound inflammatory signaling, even when treatment is delayed by several hours postinjury. Topical application of p38 MAPK inhibitor may be a clinically viable treatment after burn injury

    Characteristics<sup>*</sup> of 538 subjects.

    No full text
    <p>Characteristics<sup><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149206#t002fn001" target="_blank">*</a></sup> of 538 subjects.</p

    Manhattan plot of <i>P</i> values for MAPK-pathway SNP association testing with severity of post-burn scarring.

    No full text
    <p>The dashed line corresponds to the analysis-wide significance threshold (<i>P</i> = 2×10<sup>−5</sup>). No chromosome 18 or 21 SNPs are shown because none of the KEGG MAPK pathway genes are located on those chromosomes.</p

    The Vancouver Scar Scale [20].

    No full text
    <p>The Vancouver Scar Scale [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149206#pone.0149206.ref020" target="_blank">20</a>].</p
    corecore