37 research outputs found

    A nodal domain theorem for integrable billiards in two dimensions

    Full text link
    Eigenfunctions of integrable planar billiards are studied - in particular, the number of nodal domains, ν\nu, of the eigenfunctions are considered. The billiards for which the time-independent Schr\"odinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and non-separable integrable billiards, ν\nu satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of mmodknm\mod kn, given a particular kk, for a set of quantum numbers, m,nm, n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations.Comment: 13 pages, 5 figure

    Nodal domains of the equilateral triangle billiard

    Full text link
    We characterise the eigenfunctions of an equilateral triangle billiard in terms of its nodal domains. The number of nodal domains has a quadratic form in terms of the quantum numbers, with a non-trivial number-theoretic factor. The patterns of the eigenfunctions follow a group-theoretic connection in a way that makes them predictable as one goes from one state to another. Extensive numerical investigations bring out the distribution functions of the mode number and signed areas. The statistics of the boundary intersections is also treated analytically. Finally, the distribution functions of the nodal loop count and the nodal counting function are shown to contain information about the classical periodic orbits using the semiclassical trace formula. We believe that the results belong generically to non-separable systems, thus extending the previous works which are concentrated on separable and chaotic systems.Comment: 26 pages, 13 figure

    Enhanced thermal Hall effect in the square-lattice N\'eel state

    Get PDF
    Recent experiments on several cuprate compounds have identified an enhanced thermal Hall response in the pseudogap phase. Most strikingly, this enhancement persists even in the undoped system, which challenges our understanding of the insulating parent compounds. To explain these surprising observations, we study the quantum phase transition of a square-lattice antiferromagnet from a confining N\'eel state to a state with coexisting N\'eel and semion topological order. The transition is driven by an applied magnetic field and involves no change in the symmetry of the state. The critical point is described by a strongly-coupled conformal field theory with an emergent global SO(3)SO(3) symmetry. The field theory has four different formulations in terms of SU(2)SU(2) or U(1)U(1) gauge theories, which are all related by dualities; we relate all four theories to the lattice degrees of freedom. We show how proximity of the confining N\'eel state to the critical point can explain the enhanced thermal Hall effect seen in experiment.Comment: 8+5 pages, 4+1 figure
    corecore