8 research outputs found

    Spirulina Supplementation with High-Intensity Interval Training Decreases Adipokines Levels and Cardiovascular Risk Factors in Men with Obesity

    Get PDF
    Adiposity, a state characterized by excessive accumulation of body fat, is closely linked to metabolic complications and the secretion of specific adipokines. This study explores the potential of exercise and Spirulina supplementation to mitigate these complications and modulate adipokine release associated with obesity. The primary objective of this investigation was to examine the impact of a 12-week regimen of high-intensity training combined with Spirulina supplementation on adipokine concentrations and lipid profiles in male individuals with obesity (N = 44). The participants were randomly distributed into four groups, each consisting of 11 participants: a control group (CG), a supplement group (SG), a training group (TG), and a training plus supplement group (TSG). The intervention comprised a 12-week treatment involving Spirulina supplementation (6 g capsule daily), a 12-week high-intensity interval training (HIIT) protocol with three sessions per week, or a combined approach. Following the interventions, metabolic parameters, anthropometric measurements, cardiorespiratory indices, and circulating adipokines [CRP, Sema3C, TNF-α, IL-6, MCP1, IL-8] were assessed within 48 h of the before and final training session. Statistical analyses revealed significant differences across all measures among the groups (p < 0.05). Notably, post hoc analyses indicated substantial disparities between the CG and the three interventional groups regarding body weight (p < 0.05). The combined training and supplementation approach led to noteworthy reductions in low-density lipoprotein (LDL), total cholesterol (TC), and triglyceride (TGL) levels (all p < 0.0001), coupled with an elevation in high-density lipoprotein-cholesterol (HDL-C) levels (p = 0.0001). Furthermore, adipokine levels significantly declined in the three intervention groups relative to the CG (p < 0.05). The findings from this 12-week study demonstrate that Spirulina supplementation in conjunction with high-intensity interval training reduced adipokine levels, improved body weight and BMI, and enhanced lipid profiles. This investigation underscores the potential of Spirulina supplementation and high-intensity interval training as a synergistic strategy to ameliorate obesity-related complications and enhance overall cardiometabolic well-being in obese males

    Short Communication - Blood Magnesium levels in migraineurs within and between the headache attacks: A case control study

    Full text link
    Introduction: Some probable mechanisms have been described to the relationship between magnesium (Mg) level and migraine headache attacks. In the study reported here, we sought to determine the total Mg serum status of patients with migraine within and between the headache attacks and compare it with non-migraineurs. Methods: This study was performed on 50 migraineurs patients diagnosed according to the International Headache Society (IHS) criteria for acute migraine headache. Fifty healthy subjects without any family history or evidences of migraine were randomly selected from hospital personnel as the control group. Serum Mg level was measured by Xylidyl blue method. Results: In the group with migraine headache, no significant difference was found in the serum total Mg levels within and between migraine headache attacks (1.86 &#177; 0.41 mg/dl versus 1.95 &#177; 0.35 mg/dl, p = 0.224). But, serum total Mg level was notably lower in the group with these attacks compared to the control group (1.86 &#177; 0.41 mg/dl versus 2.10 &#177; 0.23 mg/dl, p &lt; 0.001). Conclusion: Serum Mg level is on average significantly reduced in patients with migraine compared to the healthy group. However, the serum total Mg levels in migraineurs remained constant within and between migraine headache attacks

    Effect of Nitrogen Fertilizer on Weeds Growth and Emergence and Yield and Yield Components of Corn (Zea mays L.)

    Full text link
    Introduction: Corn is one of the important crops of poaceae family which has important role in supplying food for human societies. Corn is third food crop in world and it has high potential compare to other crops because of its C4 photosynthetic pathway. In addition, corn is a strong and fast growing plant but it is sensitive to competition with weeds. According studies, there are 25 to 30 problematic weeds in corn farms which they include annual and perennial species. Annual weeds life cycle is similar to corn life cycle, there for the most problem of weeds in corn is summer annual weeds. Damage of weeds is different and it depends on weeds density, species composition, time of emergence, crop variety and other factors. While non control of weeds depending on those density and Variety, corn yeild may be decrease of 15 to 90 percent. Weeds which germinate in a short time can compete with crop on light, water and nutrition sources. Most of the weeds show better reaction to fertilizers compare with crops. This subject is due to weeds ability to nutrition absorption and aggregation and their high performances. Most of the weeds species are more responsive than crops to application of nitrogen fertilizer. Furthermore, the growth of most of the weed species increases with increasing nitrogen. Therefore, the increase of nitrogen in farming systems can have impacts on weeds and crops competitiveness. However, weeds compete with crop about using light, nutrient, water and soil space and the result of this competition is yield losses. Moreover, nitrogen is necessary to increase yield and nitrogen fertilizer enhances corn competitiveness, especially early in the season due to the slow growth of the plant and is necessary to achieve optimal performance. Excessive of nitrogen fertilizer during the growing season is benefit for weeds. Therefore, in order to study the effects of nitrogen fertilizer in combination with weeds management on yield and yield components of corn and weeds growth and emergence, a field study was conducted in research Station of Natural Resources Research Centre, Kerman province. Materials and Methods: This experiment was conducted using a randomized complete block design with three replications. The treatments consisted of different levels of nitrogen in four levels (0, 80, 160, 240 kg ha-1) urea fertilizer (46%). In addition, for assessment the effect of experimental treatments, each plot separated into two parts (complete control and non-control of weeds). Preparing the field was done with autumn plowing and spring disc. Corn seeds (single cross 704) were planted on rows in the spring with hand and with the density of 71000 plants per hectare with row spacing of 70 cm and 20cm. Irrigation was performed on average every7 days. Weeds in the control treatment were weeding by hand twice during the growing season. Results and Discussion: The results showed that nitrogen application in combination with weeds control increased yield and yield components of corn and the other growth traits, significantly. The maximum corn yield observed 12/8 kg under high nitrogen treatment (240 kg ha-1) with 88/82% increase compare with non-fertilizer treatment. Moreover, increase in nitrogen imposed a significant positive affect on height, yield and yield components including (Length and ear diameter and ear dry matter, the number of grains in row and the number of rows in ear, hundred grain weight). Nitrogen is one of the factors affecting the development of leaf area per plant and therefore, the development of the corn canopy. It seems that the increase of nitrogen during the tassel stage and seed formation which are the most sensitive stages to nitrogen absorption and photosynthesis, increased the length of ear. In addition, results of the experiment indicated that control of weeds had significant effect on different growth factors. Furthermore, the increase nitrogen rate caused to weeds emergence rate and dry weight increase. The greatest dry weight of weeds was observed at the highest level of fertilizer (240 kg ha-1). It can be said that in the latter stages of growth that competition was effected and caused dominance strong species, increasing fertilizer after a certain amount (160 kg ha-1) had no effect on the dry matter competing species in the field. Therefore, it seems that competition in the early stages is very important. Conclusion: C4 weeds such as Barnyard grass and Slender foxtail and Redroot pigweed, showed more growth increase compare with C3 species. Therefore, C4 species are more dominance than C3 species in competition and increased germination rate for these weeds with increasing nitrogen rate. As a result, we should control these weeds early in high nitrogen rate. So, nitrogen fertilizer had positive impact at different forms on the plants, resulting in the use of this nutrient should be done more researches

    Spirulina Supplementation with High-Intensity Interval Training Decreases Adipokines Levels and Cardiovascular Risk Factors in Men with Obesity

    Full text link
    Adiposity, a state characterized by excessive accumulation of body fat, is closely linked to metabolic complications and the secretion of specific adipokines. This study explores the potential of exercise and Spirulina supplementation to mitigate these complications and modulate adipokine release associated with obesity. The primary objective of this investigation was to examine the impact of a 12-week regimen of high-intensity training combined with Spirulina supplementation on adipokine concentrations and lipid profiles in male individuals with obesity (N = 44). The participants were randomly distributed into four groups, each consisting of 11 participants: a control group (CG), a supplement group (SG), a training group (TG), and a training plus supplement group (TSG). The intervention comprised a 12-week treatment involving Spirulina supplementation (6 g capsule daily), a 12-week high-intensity interval training (HIIT) protocol with three sessions per week, or a combined approach. Following the interventions, metabolic parameters, anthropometric measurements, cardiorespiratory indices, and circulating adipokines [CRP, Sema3C, TNF-α, IL-6, MCP1, IL-8] were assessed within 48 h of the before and final training session. Statistical analyses revealed significant differences across all measures among the groups (p < 0.05). Notably, post hoc analyses indicated substantial disparities between the CG and the three interventional groups regarding body weight (p < 0.05). The combined training and supplementation approach led to noteworthy reductions in low-density lipoprotein (LDL), total cholesterol (TC), and triglyceride (TGL) levels (all p < 0.0001), coupled with an elevation in high-density lipoprotein–cholesterol (HDL-C) levels (p = 0.0001). Furthermore, adipokine levels significantly declined in the three intervention groups relative to the CG (p < 0.05). The findings from this 12-week study demonstrate that Spirulina supplementation in conjunction with high-intensity interval training reduced adipokine levels, improved body weight and BMI, and enhanced lipid profiles. This investigation underscores the potential of Spirulina supplementation and high-intensity interval training as a synergistic strategy to ameliorate obesity-related complications and enhance overall cardiometabolic well-being in obese males.Anesthesiology, Pharmacology and Therapeutics, Department ofReviewedFacultyResearche
    corecore