3,490 research outputs found

    11B and Constraints on Neutrino Oscillations and Spectra from Neutrino Nucleosynthesis

    Full text link
    We have studied the sensitivity to variations in the triple alpha and 12C(alpha, gamma)16O reaction rates, of the yield of the neutrino process isotopes 7Li,11B, 19F, 138La, and 180Ta in core collapse supernovae. Compared to solar abundances, less than 15% of 7Li, about 25-80% of 19F, and about half of 138La is produced in these stars. Over a range of two sigma for each helium-burning rate, 11B is overproduced and the yield varies by an amount larger than the variation caused by the effects of neutrino oscillations. The total 11B yield, however, may eventually provide constraints on supernova neutrino spectra

    On the Sensitivity of Massive Star Nucleosynthesis and Evolution to Solar Abundances and to Uncertainties in Helium Burning Reaction Rates

    Full text link
    We explore the dependence of pre-supernova evolution and supernova nucleosynthesis yields on the uncertainties in helium burning reaction rates. Using the revised solar abundances of Lodders (2003) for the initial stellar composition, instead of those of Anders & Grevesse (1989), changes the supernova yields and limits the constraints that those yields place on the 12C(a,g)16O reaction rate. The production factors of medium-weight elements (A = 16-40) were found to be in reasonable agreement with observed solar ratios within the current experimental uncertainties in the triple alpha reaction rate. Simultaneous variations by the same amount in both reaction rates or in either of them separately, however, can induce significant changes in the central 12C abundance at core carbon ignition and in the mass of the supernova remnant. It therefore remains important to have experimental determinations of the helium burning rates so that their ratio and absolute values are known with an accuracy of 10% or better.Comment: Accepted for publication by the Astrophysical Journa

    GT strengths and electron-capture rates for pf-shell nuclei of relevance for late stellar evolution

    Full text link
    This paper presents a systematic evaluation of the ability of theoretical models to reproduce experimental Gamow-Teller transition strength distributions measured via (n,p)-type charge-exchange reactions at intermediate beam energies. The focus is on transitions from stable nuclei in the pf shell (45<A<64). The impact of deviations between experimental and theoretical Gamow-Teller strength distributions on derived stellar electron-capture rates at densities and temperatures of relevance for Type Ia and Type II supernovae is investigated. The theoretical models included in the study are based on the shell-model, using the KB3G and GXPF1a interactions, and quasiparticle random-phase approximation (QRPA) using ground-state deformation parameters and masses from the finite-range droplet model.Comment: 25 pages, 27 figure
    corecore