21 research outputs found
A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods
How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization
Abstract
Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate in this process, we conducted hydrothermal experiments simulating ore formation by reacting Zn ± Pb ± Ba–bearing brines with H2S and SO42– produced by native sulfur, with and without carbonate minerals (calcite or dolomite crystals), at 200 °C and water-saturated pressure. Sphalerite, galena, and barite (or anhydrite) crystals formed only when carbonate was present in the experiment, accompanied by carbonate dissolution. The textures of sphalerite clusters are similar to those observed in ancient and modern hydrothermal deposits. Thermodynamic modeling at 150 °C and 250 °C demonstrates that mixing of metal-rich brines and H2S causes most of the Zn in solution to precipitate as sphalerite only when carbonate dissolution occurs to buffer the pH, consistent with the experimental observations. The need for a pH buffer increases with increasing temperature, and different pH buffers may play a role for different deposit types. We propose that carbonate-buffered fluid mixing is a critical process for forming post-sedimentary Zn ± Pb ± Ba deposits in sedimentary carbonate rocks.</jats:p
The Neoarchean Conglomerate-Hosted Gold of the West Pilbara Craton, Western Australia
Abstract
Recently discovered Au in boulder conglomerate between the Mesoarchean West Pilbara superterrane basement and the overlying volcano-sedimentary stratigraphy of the Neoarchean Fortescue Group in Western Australia has renewed comparisons with the Witwatersrand conglomerate Au deposits in South Africa. As such, this has reignited the question of the Pilbara and Kaapvaal cratons being linked as part of the postulated Vaalbara continent during the Archean. However, little is known about the origin of the Pilbara conglomerate Au and its host conglomerates, as they are hitherto unstudied, and their formation and/or source is uncertain.
Here we present a detailed study on the textures, composition, and sedimentology of one newly discovered Pilbara conglomerate Au deposit at the base of the Neoarchean Fortescue Group in the northwestern Pilbara craton. The Pilbara conglomerate Au occurrences are characteristically Ag-bearing but Hg-poor polycrystalline discoid masses that are overgrown by Au-poor chloritic halos, which are further enveloped by a hydrothermal alteration halo of disseminated Au within chlorite. Both the discoids and the auriferous chlorite halo are Ag bearing, with up to ~9 wt % Ag, consistent with a hydrothermal (orogenic) origin. The discoids do not display any physical or chemical evidence for sedimentary transport; thus, their formation (placer versus hydrothermal) remains unclear. However, the position of the Au in the conglomerate, limited to the basal section of the conglomerate, is difficult to account for in a purely hydrothermal deposit model.
We argue the Pilbara conglomerate Au represents a modified placer deposit from a primary orogenic Au source, with surface evidence for sedimentation removed by partial dissolution during later hydrothermal alteration in the host conglomerate and the crystalline basement. While the basal Fortescue Group conglomerate Au shares commonalities with the time equivalent (&gt;~2.7 Ga) Venterspost Conglomerate Formation, which overlies the Witwatersrand Supergroup, inconsistencies remain, with different Au chemistries and tectonic, magmatic, sedimentary, and metamorphic-metallogenic histories of the Pilbara and Kaapvaal cratons prior to deposition of the &gt;2.7 Ga conglomerate sequences. This collectively indicates the drivers of Au metallogenesis and ultimate Au deposition in conglomerate facies were fundamentally different in the Pilbara and Kaapvaal cratons.</jats:p
Carbonate Replacement as the Principal Ore Formation Process in the Proterozoic McArthur River (HYC) Sediment-Hosted Zn-Pb Deposit, Australia
Abstract
The McArthur River (HYC) Zn-Pb-Ag deposit in the Carpentaria Zn belt, northern Australia, is one of the world’s largest and most studied sediment-hosted base metal deposits, owing to its lack of deformation and preservation of sedimentary and ore textures. However, the ore formation process (syngenetic vs. epigenetic) is still a subject of controversy. In this paper we focus on key characteristics of the HYC deposit that remain unexplained: preservation of sedimentary carbonate (dolomite) and its association with Zn, and the role of thallium (Tl) and manganese (Mn) distribution in the orebody.
Our findings demonstrate a sequence of events during ore formation: Tl is hosted almost exclusively within euhedral pyritic overgrowths around early diagenetic pyrite; sphalerite mineralization occurred after Tl-bearing pyrite overgrowths, in association with acid dissolution (replacement) of laminated and nodular dolomite across the subbasin; and outer rims are enriched in Mn on preserved dolomite at the dissolution reaction front in contact with sphalerite. New thermodynamic fluid chemistry modeling demonstrates the metal distribution and paragenesis can be explained by acidic, oxidized ore fluids entering the pyrite-dolomite host lithology, allowing reduction and pH buffering by acid carbonate dissolution, resulting in stepwise metal deposition in an evolving fluid.
We argue this represents strong evidence for epigenetic ore formation at HYC. Furthermore, the primary control on ore deposition is not synsedimentary faulting in the subbasin; rather, the chemical potential of sedimentary carbonate within reduced, sulfidic lithologies appears to be of critical importance to precipitation of sphalerite.</jats:p
Alternative therapeutics for self-limiting infections—An indirect approach to the antibiotic resistance challenge
Synopsis of an integrated guidance for enhancing the care of familial hypercholesterolaemia: an Australian perspective
Summary: Introduction: Familial hypercholesterolaemia (FH) is a common, heritable and preventable cause of premature coronary artery disease, with significant potential for positive impact on public health and healthcare savings. New clinical practice recommendations are presented in an abridged guidance to assist practitioners in enhancing the care of all patients with FH. Main recommendations: Core recommendations are made on the detection, diagnosis, assessment and management of adults, children and adolescents with FH. There is a key role for general practitioners (GPs) working in collaboration with specialists with expertise in lipidology. Advice is given on genetic and cholesterol testing and risk notification of biological relatives undergoing cascade testing for FH; all healthcare professionals should develop skills in genomic medicine. Management is under-pinned by the precepts of risk stratification, adherence to healthy lifestyles, treatment of non-cholesterol risk factors, and appropriate use of low-density lipoprotein (LDL)-cholesterol lowering therapies, including statins, ezetimibe and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Recommendations on service design are provided in the full guidance. Potential impact on care of FH: These recommendations need to be utilised using judicious clinical judgement and shared decision making with patients and families. Models of care need to be adapted to both local and regional needs and resources. In Australia new government funded schemes for genetic testing and use of PCSK9 inhibitors, as well as the National Health Genomics Policy Framework, will enable adoption of these recommendations. A broad implementation science strategy is, however, required to ensure that the guidance translates into benefit for all families with FH
