20 research outputs found

    COHERENT Collaboration data release from the measurements of CsI[Na] response to nuclear recoils

    Full text link
    Description of the data release 10.13139/OLCF/1969085 (https://doi.ccs.ornl.gov/ui/doi/426) from the measurements of the CsI[Na] response to low energy nuclear recoils by the COHERENT collaboration. The release corresponds to the results published in "D. Akimov et al 2022 JINST 17 P10034". We share the data in the form of raw ADC waveforms, provide benchmark values, and share plots to enhance the transparency and reproducibility of our results. This document describes the contents of the data release as well as guidance on the use of the data

    Monitoring the SNS basement neutron background with the MARS detector

    Full text link
    We present the analysis and results of the first dataset collected with the MARS neutron detector deployed at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) for the purpose of monitoring and characterizing the beam-related neutron (BRN) background for the COHERENT collaboration. MARS was positioned next to the COH-CsI coherent elastic neutrino-nucleus scattering detector in the SNS basement corridor. This is the basement location of closest proximity to the SNS target and thus, of highest neutrino flux, but it is also well shielded from the BRN flux by infill concrete and gravel. These data show the detector registered roughly one BRN per day. Using MARS' measured detection efficiency, the incoming BRN flux is estimated to be 1.20 ± 0.56 neutrons/m2/MWh1.20~\pm~0.56~\text{neutrons}/\text{m}^2/\text{MWh} for neutron energies above 3.5\sim3.5~MeV and up to a few tens of MeV. We compare our results with previous BRN measurements in the SNS basement corridor reported by other neutron detectors.Comment: Submitted to JINS

    First Probe of Sub-GeV Dark Matter Beyond the Cosmological Expectation with the COHERENT CsI Detector at the SNS

    Full text link
    The COHERENT collaboration searched for scalar dark matter particles produced at the Spallation Neutron Source with masses between 1 and 220~MeV/c2^2 using a CsI[Na] scintillation detector sensitive to nuclear recoils above 9~keVnr_\text{nr}. No evidence for dark matter is found and we thus place limits on allowed parameter space. With this low-threshold detector, we are sensitive to coherent elastic scattering between dark matter and nuclei. The cross section for this process is orders of magnitude higher than for other processes historically used for accelerator-based direct-detection searches so that our small, 14.6~kg detector significantly improves on past constraints. At peak sensitivity, we reject the flux consistent with the cosmologically observed dark-matter concentration for all coupling constants αD<0.64\alpha_D<0.64, assuming a scalar dark-matter particle. We also calculate the sensitivity of future COHERENT detectors to dark-matter signals which will ambitiously test multiple dark-matter spin scenarios

    Measurement of scintillation response of CsI[Na] to low-energy nuclear recoils by COHERENT

    Full text link
    We present results of several measurements of CsI[Na] scintillation response to 3-60 keV energy nuclear recoils performed by the COHERENT collaboration using tagged neutron elastic scattering experiments and an endpoint technique. Earlier results, used to estimate the coherent elastic neutrino-nucleus scattering (CEvNS) event rate for the first observation of this process achieved by COHERENT at the Spallation Neutron Source (SNS), have been reassessed. We discuss corrections for the identified systematic effects and update the respective uncertainty values. The impact of updated results on future precision tests of CEvNS is estimated. We scrutinize potential systematic effects that could affect each measurement. In particular we confirm the response of the H11934-200 Hamamatsu photomultiplier tube (PMT) used for the measurements presented in this study to be linear in the relevant signal scale region.Comment: The version accepted by JINST. The changes made as a result of the peer review process: 1. Section 8 "Global CsI[Na] QF data fit" is expanded. The main fit result and its uncertainty is NOT CHANGED. An alternative fit is now shown in Figure 14, Figure 15 is added to further validate the assumptions in the main fit. 2. The Appendix B is restructured for clarit

    Measurement of nat{}^{nat}Pb(νe\nu_e,Xnn) production with a stopped-pion neutrino source

    Full text link
    Using neutrinos produced at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), the COHERENT collaboration has studied the Pb(νe\nu_e,Xnn) process with a lead neutrino-induced-neutron (NIN) detector. Data from this detector are fit jointly with previously collected COHERENT data on this process. A combined analysis of the two datasets yields a cross section that is 0.290.16+0.170.29^{+0.17}_{-0.16} times that predicted by the MARLEY event generator using experimentally-measured Gamow-Teller strength distributions, consistent with no NIN events at 1.8σ\sigma. This is the first inelastic neutrino-nucleus process COHERENT has studied, among several planned exploiting the high flux of low-energy neutrinos produced at the SNS.Comment: 11 pages, 9 figures, version accepted by Phys. Rev.

    Beyond compliance: project on an integrated systems approach for pest risk management in South East Asia

    Get PDF
    The Beyond Compliance project, which began in July 2011 with funding from the Standards and Trade Development Facility for 2 years, aims to enhance competency and confidence in the South East Asian sub-region by applying a Systems Approach for pest risk management. The Systems Approach involves the use of integrated measures, at least two of which are independent, that cumulatively reduce the risk of introducing exotic pests through trade. Although useful in circumstances where single measures are inappropriate or unavailable, the Systems Approach is inherently more complicated than single-measure approaches, which may inhibit its uptake. The project methodology is to take prototype decision-support tools, such as Control Point-Bayesian Networks (CP-BN), developed in recent plant health initiatives in other regions, including the European PRATIQUE project, and to refine them within this sub-regional context. Case studies of high-priority potential agricultural trade will be conducted by National Plant Protection Organizations of participating South East Asian countries in trials of the tools, before further modifications. Longer term outcomes may include: more robust pest risk management in the region (for exports and imports); greater inclusion of stakeholders in development of pest risk management plans; increased confidence in trade negotiations; and new opportunities for trade
    corecore