13 research outputs found

    Ketogal: A Derivative Ketorolac Molecule with Minor Ulcerogenic and Renal Toxicity

    Get PDF
    Ketorolac is a powerful non-steroidal anti-inflammatory drug (NSAID), with a great analgesic activity, present on the Italian market since 1991. Despite the excellent therapeutic activity, the chronic use of ketorolac has long been limited owing to the high incidence of gastrointestinal and kidney side events. In our previous study, we demonstrated that ketorolac–galactose conjugate (ketogal), synthesized and tested in a single-dose study, was able to reduce ulcerogenicity, while preserving the high pharmacological efficacy of its parent drug. In this paper, in order to verify the suitability of this compound, for repeated administration, ex vivo experiments on naïve mice were performed. Mice were treated for 5 or 7 days with the highest doses of two drugs (ketorolac 10 mg/kg and ketogal 16.3 mg/kg), and the expression of both gastric COX-1 and PGsyn was evaluated. Results showed that oral ketorolac treatment significantly reduced both enzymes; surprisingly, oral treatment with ketogal did not produce significant variation in the expression of the two constitutive enzymes. Moreover, histological experiments on stomach and kidneys clearly indicated that repeated administration of ketogal induced lower toxicity than ketorolac. At same time, in vivo results clearly showed that both ketorolac and ketogal had a similar therapeutic activity in a model of inflammation and in pain perception. These effects were accompanied by the reduction of enzyme expression such as COX-2 and iNOS, and by the modulation of levels of nuclear NF-kB and cytosolic IkB-a in the inflamed paws. These very encouraging results demonstrate for the first time that ketogal could represent a valid and novel therapeutic alternative to the ketorolac and might pave the way for clinical studies

    Hydroxytyrosol prevents metabolic impairment reducing hepatic inflammation and restoring duodenal integrity in a rat model of NAFLD.

    Get PDF
    The potential mechanisms of action of polyphenols in nonalcoholic fatty liver disease (NAFLD) are overlooked. Here, we evaluate the beneficial therapeutic effects of hydroxytyrosol (HT), the major metabolite of the oleuropein, in a nutritional model of insulin resistance (IR) and NAFLD by high-fat diet. Young male rats were divided into three groups receiving (1) standard diet (STD; 10.5% fat), (2) high-fat diet (HFD; 58.0% fat) and (3) HFD+HT (10 mg/kg/day by gavage). After 5 weeks, the oral glucose tolerance test was performed, and at 6th week, blood sample and tissues (liver and duodenum) were collected for following determinations. The HT-treated rats showed a marked reduction in serum AST, ALT and cholesterol and improved glucose tolerance and insulin sensitivity, reducing homeostasis model assessment index. HT significantly corrected the metabolic impairment induced by HFD, increasing hepatic peroxisome proliferator activated receptor PPAR-α and its downstream-regulated gene fibroblast growth factor 21, the phosphorylation of acetyl-CoA carboxylase and the mRNA carnitine palmitoyltransferase 1a. HT also reduced liver inflammation and nitrosative/oxidative stress decreasing the nitrosylation of proteins, reactive oxygen species production and lipid peroxidation. Moreover, HT restored intestinal barrier integrity and functions (fluorescein isothiocyanate-dextran permeability and mRNA zona occludens ZO-1). Our data demonstrate the beneficial effect of HT in the prevention of early inflammatory events responsible for the onset of IR and steatosis, reducing hepatic inflammation and nitrosative/oxidative stress and restoring glucose homeostasis and intestinal barrier integrity

    Polymer Coated Oncolytic Adenovirus to Selectively Target Hepatocellular Carcinoma Cells.

    No full text
    Despite significant advances in chemotherapy, the overall prognosis of hepatocellular carcinoma (HCC) remains extremely poor. HCC targeting strategies were combined with the tumor cell cytotoxicity of oncolytic viruses (OVs) to develop a more efficient and selective therapeutic system. OVs were coated with a polygalactosyl--agmatyl diblock copolymer (Gal--Agm), with high affinity for the asialoglycoprotein receptor (ASGPR) expressed on the liver cell surface, exploiting the electrostatic interaction of the positively charged agmatine block with the negatively charged adenoviral capsid surface. The polymer coating altered the viral particle diameter (from 192 to 287 nm) and zeta-potential (from -24.7 to 23.3 mV) while hiding the peculiar icosahedral symmetrical OV structure, as observed by TEM. Coated OVs showed high potential therapeutic value on the human hepatoma cell line HepG2 (cytotoxicity of 72.4% ± 4.96), expressing a high level of ASGPRs, while a lower effect was attained with ASPGR-negative A549 cell line (cytotoxicity of 54.4% ± 1.59). Conversely, naked OVs showed very similar effects in both tested cell lines. Gal--Agm OV coating enhanced the infectivity and immunogenic cell death program in HepG2 cells as compared to the naked OV. This strategy provides a rationale for future studies utilizing oncolytic viruses complexed with polymers toward effective treatment of hepatocellular carcinoma

    Galactosyl prodrug of palmitoylethanolamide: Synthesis, stability, cell permeation and cytoprotective activity

    No full text
    N-Palmitoylethanolamide (PEA) is emerging as a novel therapeutic agent in the treatment of neuropathic pain and neurodegenerative diseases. Unfortunately, PEA poorly reaches the central nervous system (CNS), after peripheral administration, since it is inactivated through intracellular hydrolysis by lipid amidases. Since prodrug approach is one of the most popular methods used to increase cell permeability, the aim of this paper consists in the synthesis of a new galactosyl prodrug of PEA, the palmitoylethanolamide-succinamyl-D-galactos-6′-yl ester (PEAGAL). Biological experiments both in neuroblastoma and in C6 glioma cells, together with quantitative analyses performed through a LC-MS-MS technique, demonstrate the better efficacy of PEAGAL compared to PEA and its higher cell permeation. Our results encourage further experiments in animal models of neuropathic pain and of neurological disorders and/or neurodegenerative diseases, in order to promote a more effective peripherally administrated derivative of PEA

    Ketogal Safety Profile in Human Primary Colonic Epithelial Cells and in Mice

    No full text
    In our previous studies, a ketorolac–galactose conjugate (ketogal) showed prolonged anti-inflammatory and analgesic activity, causing less gastric ulcerogenic effect and renal toxicity than its parent drug ketorolac. In order to demonstrate the safer profile of ketogal compared to ketorolac, histopathological changes in the small intestine and liver using three staining techniques before and after repeated oral administration in mice with ketorolac or an equimolecular dose of its galactosylated prodrug ketogal were assessed. Cytotoxicity and oxidative stress parameters were evaluated and compared in ketorolac- and ketogal-treated Human Primary Colonic Epithelial cells at different concentrations and incubation times. Evidence of mitochondrial oxidative stress was found after ketorolac treatment; this was attributable to altered mitochondrial membrane depolarization and oxidative stress parameters. No mitochondrial damage was observed after ketogal treatment. In ketorolac-treated mice, severe subepithelial vacuolation and erosion with inflammatory infiltrates and edematous area in the intestinal tissues were noted, as well as alterations in sinusoidal spaces and hepatocytes with foamy cytoplasm. In contrast, treatment with ketogal provided a significant improvement in the morphology of both organs. The prodrug clearly demonstrated a safer profile than its parent drug both in vitro and ex vivo, confirming that ketogal is a strategic alternative to ketorolac

    A GALACTOSYLATED PRO-DRUG OF URSODEOXYCHOLIC ACID: DESIGN, SYNTHESIS, CHARACTERIZATION AND PHARMACOLOGICAL EFFECTS IN A RAT MODEL OF ESTROGEN-INDUCED CHOLESTASIS

    No full text
    Ursodeoxycholic acid (UDCA) is considered the first-choice therapy for cholestatic disorders. To enhance solubility and exploit specific transporters in liver, we synthesized a new galactosyl pro-drug of UDCA (UDCAgal). Ethinylestradiol (EE)-induced cholestasis was used to study and compare the effects of UDCAgal with UDCA on bile flow, hepatic canalicular efflux transporter expression, and inflammation. UDCAgal resulted quite stable both at pH 7.4 and 1.2 and regenerated the parent drug after incubation in human plasma. Its solubility, higher than UDCA, was pH- and temperature-independent. UDCAgal displayed a higher cell permeation compared to UDCA in liver HepG2 cells. Moreover, in cholestatic rats, UDCAgal showed a higher potency compared to UDCA in reducing serum biomarkers (AST, ALT, and ALP) and cytokines (TNF-α and IL-1β). The higher effect of UDCAgal on the increase in bile salt export pump and multidrug resistance-associated protein 2 transcription indicated an improved spillover of bile acids from the liver. UDCAgal showed a reduction in CCL2, as well as TNF-α, IL-1β, and cyclooxygeanse-2 mRNAs, indicating a reduction in hepatic neutrophil accumulation and inflammation. Moreover, UDCAgal, similarly to UDCA, heightens bile flow and modulates biliary acids secretion. These results indicate that UDCAgal has a potential in the treatment of cholestatic disease

    Aceclofenac-Galactose Conjugate: Design, Synthesis, Characterization, and Pharmacological and Toxicological Evaluations

    No full text
    Aceclofenac is a popular analgesic, antipyretic, and nonsteroidal anti-inflammatory drug (NSAID) used for prolonged treatment (at least three months) in musculoskeletal disorders. It is characterized by several limitations such as poor water solubility and low oral bioavailability. The main side-effect of aceclofenac, as well as all NSAIDs, is the gastrotoxicity; among other adverse effects, there is the risk of bleeding since aceclofenac reversibly inhibits platelet aggregation. With the aim to reduce these drawbacks, we have designed, synthesized, and characterized, both in vitro and in vivo, an orally administrable pro-drug of aceclofenac (ACEgal). ACEgal was obtained by conjugating carboxyl group with the 6-OH group of d-galactose; its structure was confirmed by X-ray powder diffractometry. The pro-drug was shown to be stable at 37 °C in simulated gastric fluid (SGF-without pepsin, pH = 1.2) and moderately stable in phosphate buffered saline (PBS, pH = 7.4). However, it hydrolyzed in human serum with a half-life ( t1/2) of 36 min, producing aceclofenac. Furthermore, if compared to its parent drug, ACEgal was four-times more soluble in SGF. To predict human intestinal absorption, cell permeability in a Caco-2 model of aceclofenac and ACEgal was determined. Anti-inflammatory, analgesic, and ulcerogenic activities have been investigated in vivo. In addition, oxidative stress parameters (thiobarbituric acid reactive substances, TBARS, and glutathione, GSH) and platelet antiaggregatory activity both of parent drug and pro-drug were evaluated. Results clearly showed that the conjugation of aceclofenac to a galactose molecule improves physicochemical, toxicological (at gastric and blood level), and pharmacological profile of aceclofenac itself without changing intestinal permeability and antiplatelet activity (in spite the new sugar moiety)
    corecore