41 research outputs found

    Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using FokI-dCas9

    Get PDF
    Xenotransplantation from pigs has been advocated as a solution to the perennial shortage of donated human organs and tissues. CRISPR/Cas9 has facilitated the silencing of genes in donor pigs that contribute to xenograft rejection. However, the generation of modified pigs using second-generation nucleases with much lower off-target mutation rates than Cas9, such as FokI-dCas9, has not been reported. Furthermore, there have been no reports on the use of CRISPR to knock protective transgenes into detrimental porcine genes. In this study, we used FokI-dCas9 with two guide RNAs to integrate a 7.1 kilobase pair transgene into exon 9 of the GGTA1 gene in porcine fetal fibroblasts. The modified cells lacked expression of the αGal xenoantigen, and secreted an anti-CD2 monoclonal antibody encoded by the transgene. PCR and sequencing revealed precise integration of the transgene into one allele of GGTA1, and a small deletion in the second allele. The cells were used for somatic cell nuclear transfer to generate healthy male knock-in piglets, which did not express αGal and which contained anti-CD2 in their serum. We have therefore developed a versatile high-fidelity system for knocking transgenes into the pig genome for xenotransplantation purposes.Mark B. Nottle, Evelyn J. Salvaris, Nella Fisicaro, Stephen McIlfatrick, Ivan Vassiliev, Wayne J. Hawthorne, Philip J. O’Connell, Jamie L. Brady, Andrew M. Lew and Peter J. Cowa

    Control of IBMIR in Neonatal Porcine Islet Xenotransplantation in Baboons

    Get PDF
    The instant blood-mediated inflammatory reaction (IBMIR) is a major obstacle to the engraftment of intraportal pig islet xenografts in primates. Higher expression of the galactose-α1,3-galactose (αGal) xenoantigen on neonatal islet cell clusters (NICC) than on adult pig islets may provoke a stronger reaction, but this has not been tested in the baboon model. Here, we report that WT pig NICC xenografts triggered profound IBMIR in baboons, with intravascular clotting and graft destruction occurring within hours, which was not prevented by anti-thrombin treatment. In contrast, IBMIR was minimal when recipients were immunosuppressed with a clinically relevant protocol and transplanted with NICC from αGal-deficient pigs transgenic for the human complement regulators CD55 and CD59. These genetically modified (GM) NICC were less susceptible to humoral injury in vitro than WT NICC, inducing significantly less complement activation and thrombin generation when incubated with baboon platelet-poor plasma. Recipients of GM NICC developed a variable anti-pig antibody response, and examination of the grafts 1 month after transplant revealed significant cell-mediated rejection, although scattered insulin-positive cells were still present. Our results indicate that IBMIR can be attenuated in this model, but long-term graft survival may require more effective immunosuppression or further donor genetic modification

    Tenecteplase versus Alteplase before thrombectomy for ischemic stroke

    Get PDF
    Intravenous infusion of alteplase is used for thrombolysis before endovascular thrombectomy for ischemic stroke. Tenecteplase, which is more fibrin-specific and has longer activity than alteplase, is given as a bolus and may increase the incidence of vascular reperfusion. METHODS We randomly assigned patients with ischemic stroke who had occlusion of the internal carotid, basilar, or middle cerebral artery and who were eligible to undergo thrombectomy to receive tenecteplase (at a dose of 0.25 mg per kilogram of body weight; maximum dose, 25 mg) or alteplase (at a dose of 0.9 mg per kilogram; maximum dose, 90 mg) within 4.5 hours after symptom onset. The primary outcome was reperfusion of greater than 50% of the involved ischemic territory or an absence of retrievable thrombus at the time of the initial angiographic assessment. Noninferiority of tenecteplase was tested, followed by superiority. Secondary outcomes included the modified Rankin scale score (on a scale from 0 [no neurologic deficit] to 6 [death]) at 90 days. Safety outcomes were death and symptomatic intracerebral hemorrhage. RESULTS Of 202 patients enrolled, 101 were assigned to receive tenecteplase and 101 to receive alteplase. The primary outcome occurred in 22% of the patients treated with tenecteplase versus 10% of those treated with alteplase (incidence difference, 12 percentage points; 95% confidence interval [CI], 2 to 21; incidence ratio, 2.2; 95% CI, 1.1 to 4.4; P=0.002 for noninferiority; P=0.03 for superiority). Tenecteplase resulted in a better 90-day functional outcome than alteplase (median modified Rankin scale score, 2 vs. 3; common odds ratio, 1.7; 95% CI, 1.0 to 2.8; P=0.04). Symptomatic intracerebral hemorrhage occurred in 1% of the patients in each group. CONCLUSIONS Tenecteplase before thrombectomy was associated with a higher incidence of reperfusion and better functional outcome than alteplase among patients with ischemic stroke treated within 4.5 hours after symptom onset

    Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data

    Get PDF
    Background: Patients who have had a stroke with unknown time of onset have been previously excluded from thrombolysis. We aimed to establish whether intravenous alteplase is safe and effective in such patients when salvageable tissue has been identified with imaging biomarkers. Methods: We did a systematic review and meta-analysis of individual patient data for trials published before Sept 21, 2020. Randomised trials of intravenous alteplase versus standard of care or placebo in adults with stroke with unknown time of onset with perfusion-diffusion MRI, perfusion CT, or MRI with diffusion weighted imaging-fluid attenuated inversion recovery (DWI-FLAIR) mismatch were eligible. The primary outcome was favourable functional outcome (score of 0–1 on the modified Rankin Scale [mRS]) at 90 days indicating no disability using an unconditional mixed-effect logistic-regression model fitted to estimate the treatment effect. Secondary outcomes were mRS shift towards a better functional outcome and independent outcome (mRS 0–2) at 90 days. Safety outcomes included death, severe disability or death (mRS score 4–6), and symptomatic intracranial haemorrhage. This study is registered with PROSPERO, CRD42020166903. Findings: Of 249 identified abstracts, four trials met our eligibility criteria for inclusion: WAKE-UP, EXTEND, THAWS, and ECASS-4. The four trials provided individual patient data for 843 individuals, of whom 429 (51%) were assigned to alteplase and 414 (49%) to placebo or standard care. A favourable outcome occurred in 199 (47%) of 420 patients with alteplase and in 160 (39%) of 409 patients among controls (adjusted odds ratio [OR] 1·49 [95% CI 1·10–2·03]; p=0·011), with low heterogeneity across studies (I2=27%). Alteplase was associated with a significant shift towards better functional outcome (adjusted common OR 1·38 [95% CI 1·05–1·80]; p=0·019), and a higher odds of independent outcome (adjusted OR 1·50 [1·06–2·12]; p=0·022). In the alteplase group, 90 (21%) patients were severely disabled or died (mRS score 4–6), compared with 102 (25%) patients in the control group (adjusted OR 0·76 [0·52–1·11]; p=0·15). 27 (6%) patients died in the alteplase group and 14 (3%) patients died among controls (adjusted OR 2·06 [1·03–4·09]; p=0·040). The prevalence of symptomatic intracranial haemorrhage was higher in the alteplase group than among controls (11 [3%] vs two [<1%], adjusted OR 5·58 [1·22–25·50]; p=0·024). Interpretation: In patients who have had a stroke with unknown time of onset with a DWI-FLAIR or perfusion mismatch, intravenous alteplase resulted in better functional outcome at 90 days than placebo or standard care. A net benefit was observed for all functional outcomes despite an increased risk of symptomatic intracranial haemorrhage. Although there were more deaths with alteplase than placebo, there were fewer cases of severe disability or death. Funding: None

    Liver grafts from CD39-overexpressing rodents are protected from ischemia reperfusion injury due to reduced numbers of resident CD4 T cells

    Get PDF
    UNLABELLED: Ischemia-reperfusion injury (IRI) is a major limiting event for successful liver transplantation, and CD4+ T cells and invariant natural killer T (iNKT) cells have been implicated in promoting IRI. We hypothesized that hepatic overexpression of CD39, an ectonucleotidase with antiinflammatory functions, will protect liver grafts after prolonged cold ischemia. CD39-transgenic (CD39tg) and wildtype (WT) mouse livers were transplanted into WT recipients after 18 hours cold storage and pathological analysis was performed 6 hours after transplantation. Serum levels of alanine aminotransferase and interleukin (IL)-6 were significantly reduced in recipients of CD39tg livers compared to recipients of WT livers. Furthermore, less severe histopathological injury was demonstrated in the CD39tg grafts. Immune analysis revealed that CD4+ T cells and iNKT cells were significantly decreased in number in the livers of untreated CD39tg mice. This was associated with a peripheral CD4+ T cell lymphopenia due to defective thymocyte maturation. To assess the relative importance of liver-resident CD4+ T cells and iNKT cells in mediating liver injury following extended cold preservation and transplantation, WT mice depleted of CD4+ T cells or mice genetically deficient in iNKT cells were used as donors. The absence of CD4+ T cells, but not iNKT cells, protected liver grafts from early IRI. CONCLUSION: Hepatic CD4+ T cells, but not iNKT cells, play a critical role in early IRI following extended cold preservation in a liver transplant model

    Clonidine inhibits anti-non-Gal IgM xenoantibody elicited in multiple pig-to-primate models

    Full text link
    Article first published online: 21 OCT 2015Survival of vascularized xenografts is dependent on pre-emptive inhibition of the xenoantibody response against galactosyltransferase knockout (GTKO) porcine organs. Our analysis in multiple GTKO pig-to-primate models of xenotransplantation has demonstrated that the anti-non-gal-α-1,3-gal (anti-non-Gal) xenoantibody response displays limited structural diversity. This allowed our group to identify an experimental compound which selectively inhibited induced anti-non-Gal IgM xenoantibodies. However, because this compound had an unknown safety profile, we extended this line of research to include screening small molecules with known safety profiles allowing rapid advancement to large animal models.The NIH clinical collections of small molecules were screened by ELISA for their ability to inhibit xenoantibody binding to GTKO pig endothelial cells. Serum collected from non-immunosuppressed rhesus monkeys at day 14 post-injection with GTKO pig endothelial cells was utilized as a source of elicited xenoantibody for initial screening. Virtual small molecule screening based on xenoantibody structure was used to assess the likelihood that the identified small molecules bound xenoantibody directly. As a proxy for selectivity, ELISAs against tetanus toxoid and the natural antigens laminin, thyroglobulin, and single-stranded DNA (ssDNA) were utilized to assess the ability of the identified reagents to inhibit additional antibody responses. The identified inhibitory small molecules were further tested for their ability to inhibit xenoantibody elicited in multiple settings, including rhesus monkeys pre-treated with an anti-non-Gal selective anti-idiotypic antibody, non-immunosuppressed rhesus monkeys immunized with wild-type fetal pig isletlike cell clusters, and non-immunosuppressed baboons transplanted with GTKO multiple transgenic pig kidneys.Four clinically relevant small molecules inhibited anti-non-Gal IgM binding to GTKO pig endothelial cells in vitro. Three of these drugs displayed a limited region of structural similarity suggesting they may inhibit xenoantibody by a similar mechanism. One of these, the anti-hypertensive agent clonidine, displayed only minimal inhibition of antibodies elicited by vaccination against tetanus toxoid or pre-existing natural antibodies against laminin, thyroglobulin, or ssDNA. Furthermore, clonidine inhibited elicited anti-non-Gal IgM from all animals that demonstrated a xenoantibody response in each experimental setting.Clinically relevant small molecule drugs with known safety profiles can inhibit xenoantibody elicited against non-Gal antigens in diverse experimental xenotransplantation settings. These molecules are ready to be tested in large animal models. However, it will first be necessary to optimize the timing and dosing required to inhibit xenoantibodies in vivo.John M. Stewart, Alice F. Tarantal, Wayne J. Hawthorne, Evelyn J. Salvaris, Philip J. O'Connell, Mark B. Nottle, Anthony J. F. d'Apice, Peter J. Cowan and Mary Kearns-Jonke

    Rhesus monkeys and baboons develop clotting factor VIII inhibitors in response to porcine endothelial cells or islets

    Full text link
    Article first published online: 8 MAY 2014BACKGROUND: Xenotransplantation of porcine organs holds promise of solving the human organ donor shortage. The use of α-1,3-galactosyltransferase knockout (GTKO) pig donors mitigates hyperacute rejection, while delayed rejection is currently precipitated by potent immune and hemostatic complications. Previous analysis by our laboratory suggests that clotting factor VIII (FVIII) inhibitors might be elicited by the structurally restricted xenoantibody response which occurs after transplantation of either pig GTKO/hCD55/hCD59/hHT transgenic neonatal islet cell clusters or GTKO endothelial cells. METHODS: A recombinant xenoantibody was generated using sequences from baboons demonstrating an active xenoantibody response at day 28 after GTKO/hCD55/hCD59/hHT transgenic pig neonatal islet cell cluster transplantation. Rhesus monkeys were immunized with GTKO pig endothelial cells to stimulate an anti-non-Gal xenoantibody response. Serum was collected at days 0 and 7 after immunization. A two-stage chromogenic assay was used to measure FVIII cofactor activity and identify antibodies which inhibit FVIII function. Molecular modeling and molecular dynamics simulations were used to predict antibody structure and the residues which contribute to antibody-FVIII interactions. Competition ELISA was used to verify predictions at the domain structural level. RESULTS: Antibodies that inhibit recombinant human FVIII function are elicited after non-human primates are transplanted with either GTKO pig neonatal islet cell clusters or endothelial cells. There is an apparent increase in inhibitor titer by 15 Bethesda units (Bu) after transplant, where an increase greater than 5 Bu can indicate pathology in humans. Furthermore, competition ELISA verifies the computer modeled prediction that the recombinant xenoantibody, H66K12, binds the C1 domain of FVIII. CONCLUSIONS: The development of FVIII inhibitors is a novel illustration of the potential impact the humoral immune response can have on coagulative dysfunction in xenotransplantation. However, the contribution of these antibodies to rejection pathology requires further evaluation because "normal" coagulation parameters after successful xenotransplantation are not fully understood.John M. Stewart, Alice F. Tarantal, Wayne J. Hawthorne, Evelyn J. Salvaris, Philip J. O'Connell, Mark B. Nottle, Anthony J. F. d'Apice, Peter J. Cowan and Mary Kearns-Jonke
    corecore