24 research outputs found

    Hebbian activity-dependent plasticity in white matter

    Get PDF
    Synaptic plasticity is required for learning and follows Hebb’s rule, the computational principle underpinning associative learning. In recent years, a complementary type of brain plasticity has been identified in myelinated axons, which make up the majority of brain’s white matter. Like synaptic plasticity, myelin plasticity is required for learning, but it is unclear whether it is Hebbian or whether it follows different rules. Here, we provide evidence that white matter plasticity operates following Hebb’s rule in humans. Across two experiments, we find that co-stimulating cortical areas to induce Hebbian plasticity leads to relative increases in cortical excitability and associated increases in a myelin marker within the stimulated fiber bundle. We conclude that Hebbian plasticity extends beyond synaptic changes and can be observed in human white matter fibers

    Associations between fitness, physical activity and mental health in a community sample of young British adolescents: baseline data from the Fit to Study trial

    Get PDF
    Objectives. To examine relationships between fitness, physical activity and psychosocial problems among English secondary school pupils and to explore how components of physically active lifestyles are associated with mental health and well-being. Methods. A total of 7385 participants aged 11–13 took a fitness test and completed self-reported measures of physical activity, attitudes to activity, psychosocial problems and self-esteem during the Fit to Study trial. Multilevel regression, which modelled school-level cluster effects, estimated relationships between activity, fitness and psychosocial problems; canonical correlation analysis (CCA) explored modes of covariation between active lifestyle and mental health variables. Models were adjusted for covariates of sex, free school meal status, age, and time and location of assessments. Results. Higher fitness was linked with fewer internalising problems (β=−0.23; 95% CI −0.26 to −0.21; p<0.001). More activity was also related to fewer internalising symptoms (β=−0.24; 95% CI −0.27 to −0.20; p<0.001); the relationship between activity and internalising problems was significantly stronger for boys than for girls. Fitness and activity were also favourably related to externalising symptoms, with smaller effect sizes. One significant CCA mode, with a canonical correlation of 0.52 (p=0.001), was characterised high cross-loadings for positive attitudes to activity (0.46) and habitual activity (0.42) among lifestyle variables; and for physical and global self-esteem (0.47 and 0.42) among mental health variables. Conclusion. Model-based and data-driven analysis methods indicate fitness as well as physical activity are linked to adolescent mental health. If effect direction is established, fitness monitoring could complement physical activity measurement when tracking public health

    The importance of prototype similarity for physical activity: cross-sectional and longitudinal associations in a large sample of young adolescents

    Get PDF
    Objectives. Physical activity declines during adolescence. The Theory of Planned Behaviour is a useful framework for investigating activity, but leaves variance unexplained. We explored the utility of a dual-process approach by using the Theory of Planned Behaviour and the Prototype Willingness Model to investigate correlates of physical activity, and of one-year change in physical activity, among a large sample of adolescents. Design. A cross-sectional and longitudinal analysis of baseline and follow-up data from the Fit to Study cluster-randomised trial.  Methods. 9,699 secondary school pupils at baseline and 4,632 at follow-up (mean age=12.5 years) completed measures of past week physical activity and constructs from the two behaviour-change models, at time-points one year apart. Cross-sectional analyses used multilevel, stepwise models to measure strength of associations between model constructs and physical activity, and variance in behaviour explained by Prototype Willingness Model over and above Theory of Planned Behaviour. In longitudinal analyses, change scores were calculated by subtracting follow-up from baseline scores. Models controlling for trial treatment status measured strength of associations between change scores, and variance explained. Results. At baseline, after controlling for past behaviour, physically-active prototype similarity had the strongest relationship with activity after intention to be active.  Change in prototype similarity had the strongest relationship with change in activity after change in intention and attitudes. Prototype perceptions and willingness explained additional variance in behaviour. Conclusion. A dual-process model incorporating prototype perceptions could more usefully predict  physical activity than models based on rational expectations alone.  Behaviour-change interventions promoting an active self-image could be tested for effects on physical activity. Key words: Theory of Planned Behaviour, Prototype Willingness Model, physical activity, adolescent, behaviour-change

    Reassessing associations between white matter and behaviour with multimodal microstructural imaging

    Get PDF
    Several studies have established specific relationships between White Matter (WM) and behaviour. However, these studies have typically focussed on fractional anisotropy (FA), a neuroimaging metric that is sensitive to multiple tissue properties, making it difficult to identify what biological aspects of WM may drive such relationships. Here, we carry out a pre-registered assessment of WM-behaviour relationships in 50 healthy individuals across multiple behavioural and anatomical domains, and complementing FA with myelin-sensitive quantitative MR modalities (MT, R1, R2∗). Surprisingly, we only find support for predicted relationships between FA and behaviour in one of three pre-registered tests. For one behavioural domain, where we failed to detect an FA-behaviour correlation, we instead find evidence for a correlation between behaviour and R1. This hints that multimodal approaches are able to identify a wider range of WM-behaviour relationships than focusing on FA alone. To test whether a common biological substrate such as myelin underlies WM-behaviour relationships, we then ran joint multimodal analyses, combining across all MRI parameters considered. No significant multimodal signatures were found and power analyses suggested that sample sizes of 40–200 may be required to detect such joint multimodal effects, depending on the task being considered. These results demonstrate that FA-behaviour relationships from the literature can be replicated, but may not be easily generalisable across domains. Instead, multimodal microstructural imaging may be best placed to detect a wider range of WM-behaviour relationships, as different MRI modalities provide distinct biological sensitivities. Our findings highlight a broad heterogeneity in WM\u27s relationship with behaviour, suggesting that variable biological effects may be shaping their interaction

    Language ability in preterm children is associated with arcuate fasciculi microstructure at term

    Get PDF
    In the mature human brain, the arcuate fasciculus mediates verbal working memory, word learning, and sublexical speech repetition. However, its contribution to early language acquisition remains unclear. In this work, we aimed to evaluate the role of the direct segments of the arcuate fasciculi in the early acquisition of linguistic function. We imaged a cohort of 43 preterm born infants (median age at birth of 30 gestational weeks; median age at scan of 42 postmenstrual weeks) using high b value high-angular resolution diffusion-weighted neuroimaging and assessed their linguistic performance at 2 years of age. Using constrained spherical deconvolution tractography, we virtually dissected the arcuate fasciculi and measured fractional anisotropy (FA) as a metric of white matter development. We found that term equivalent FA of the left and right arcuate fasciculi was significantly associated with individual differences in linguistic and cognitive abilities in early childhood, independent of the degree of prematurity. These findings suggest that differences in arcuate fasciculi microstructure at the time of normal birth have a significant impact on language development and modulate the first stages of language learning

    Motor learning in developmental coordination disorder: behavioral and neuroimaging study

    Get PDF
    Developmental coordination disorder (DCD) is characterized by motor learning deficits that are poorly understood within whole-body activities context. Here we present results of one of the largest non-randomized interventional trials combining brain imaging and motion capture techniques to examine motor skill acquisition and its underpinning mechanisms in adolescents with and without DCD. A total of 86 adolescents with low fitness levels (including 48 with DCD) were trained on a novel stepping task for a duration of 7 weeks. Motor performance during the stepping task was assessed under single and dual-task conditions. Concurrent cortical activation in the prefrontal cortex (PFC) was measured using functional near-infrared spectroscopy (fNIRS). Additionally, structural and functional magnetic resonance imaging (MRI) was conducted during a similar stepping task at the beginning of the trial. The results indicate that adolescents with DCD performed similarly to their peers with lower levels of fitness in the novel stepping task and demonstrated the ability to learn and improve motor performance. Both groups showed significant improvements in both tasks and under single- and dual-task conditions at post-intervention and follow-up compared to baseline. While both groups initially made more errors in the Stroop task under dual-task conditions, at follow-up, a significant difference between single- and dual-task conditions was observed only in the DCD group. Notably, differences in prefrontal activation patterns between the groups emerged at different time points and task conditions. Adolescents with DCD exhibited distinct prefrontal activation responses during the learning and performance of a motor task, particularly when complexity was increased by concurrent cognitive tasks. Furthermore, a relationship was observed between MRI brain structure and function measures and initial performance in the novel stepping task. Overall, these findings suggest that strategies that address task and environmental complexities, while simultaneously enhancing brain activity through a range of tasks, offer opportunities to increase the participation of adolescents with low fitness in physical activity and sports

    Dual-task walking and automaticity after stroke: Insights from a secondary analysis and imaging sub-study of a randomised controlled trial

    Get PDF
    Objective. To test the extent to which initial walking speed influences dual-task performance after walking intervention, hypothesising that slow walking speed affects automatic gait control, limiting executive resource availability. Design. A secondary analysis of a trial of dual-task (DT) and single-task (ST) walking interventions comparing those with good (walking speed ⩾0.8 m s−1, n = 21) and limited (walking speed <0.79 m s−1, n = 24) capacity at baseline. Setting. Community. Subjects. Adults six-months post stroke with walking impairment. Interventions. Twenty sessions of 30 minutes treadmill walking over 10 weeks with (DT) or without (ST) cognitive distraction. Good and limited groups were formed regardless of intervention received. Main measures. A two-minute walk with (DT) and without (ST) a cognitive distraction assessed walking. fNIRS measured prefrontal cortex activation during treadmill walking with (DT) and without (ST) Stroop and planning tasks and an fMRI sub-study used ankle-dorsiflexion to simulate walking. Results. ST walking improved in both groups (∆baseline: Good = 8.9 ± 13.4 m, limited = 5.3±8.9 m, Group × time = P < 0.151) but only the good walkers improved DT walking (∆baseline: Good = 10.4 ± 13.9 m, limited = 1.3 ± 7.7 m, Group × time = P < 0.025). fNIRS indicated increased ispilesional prefrontal cortex activation during DT walking following intervention (P = 0.021). fMRI revealed greater DT cost activation for limited walkers, and increased resting state connectivity of contralesional M1 with cortical areas associated with conscious gait control at baseline. After the intervention, resting state connectivity between ipsilesional M1 and bilateral superior parietal lobe, involved in integrating sensory and motor signals, increased in the good walkers compared with limited walkers. Conclusion. In individuals who walk slowly it may be difficult to improve dual-task walking ability

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    Developments in diffusion MRI and tractography to study language network alterations following very preterm birth

    Get PDF
    Language is key for human interactions and relies on a well-known set of brain cortical areas linked by large-scale white-matter fasciculi. However, very little is known about the ontogeny of the language network, how it is affected by very preterm birth, or how structural connectivity profiles observable before language acquisition may predispose distinct computational mechanisms associated with later language processing. Recent advances in diffusion-weighted magnetic resonance imaging and tractography are allowing researchers to provide novel, insightful understanding of the human language brain network through in vivo non-invasive investigations across the whole lifespan. Here, we propose a commentary on a series of papers which aimed to summarise the latest technological advances in neuroimaging research in order to provide future directions to study language development following very preterm birth
    corecore