13 research outputs found

    Implementation challenges of annotated 3D models in collaborative design environments

    Full text link
    Recent studies in the area of collaborative design have proposed the use of 3D annotations as a tool to make design information explicitly available within the 3D model, so that different stakeholders can share information throughout the product lifecycle. Annotation practices defined by the latest digital definition standards have formalized the presentation of information and facilitated the implementation of annotation tools in CAD systems. In this paper, we review the latest studies in annotation methods and technologies and explore their expected benefits in the context of collaborative design. Next, we analyze the implementation challenges of different annotation approaches, focusing specifically on design intent annotations. An analysis of the literature suggests that the use of annotations has a positive effect on collaborative design communication as long as proper implementation practices, tools, and user interaction mechanisms are in placeCamba, J.; Contero, M.; Salvador Herranz, GM. (2014). Implementation challenges of annotated 3D models in collaborative design environments. Lecture Notes in Computer Science. 8683:222-229. doi:10.1007/978-3-319-10831-5_332222298683Katzenbach, J.R., Smith, D.K.: The Discipline of Teams. Harvard Business Review 71(2), 111–120 (2005)Campion, M.A., Medsker, G.J., Higgs, A.C.: Relations between Work Group Characteristics and Effectiveness: Implications for Designing Effective Work Groups. Personnel Psychology 46, 823–850 (1993)Chudoba, K.M., Wynn, E., Lu, M., Watson-Manheim, M.B.: How Virtual Are We? Measuring Virtuality and Understanding its Impact in a Global Organization. Information Systems Journal 15, 279–306 (2005)Lahti, H., Seitamaa-Hakkarainen, P., Hakkarainen, K.: Collaboration Patterns in Computer Supported Collaborative Designing. Design Studies 25, 351–371 (2004)Chang, K.H., Silva, J., Bryant, I.: Concurrent Design and Manufacturing for Mechanical Systems. Concurrent Engineering 7, 290–308 (1999)Jackson, C., Buxton, M.: The Design Reuse Benchmark Report: Seizing the Opportunity to Shorten Product Development. Aberdeen Group, Boston (2007)Lang, S., Dickinson, J., Buchal, R.O.: Cognitive Factors in Distributed Design. Computers in Industry 48, 89–98 (2002)Alemanni, M., Destefanis, F., Vezzetti, E.: Model-Based Definition Design in the Product Lifecycle Management Scenario. International Journal of Advanced Manufacturing Technology 52(1-4), 1–14 (2011)ASME: ASME Y14.41-2012 Digital Product Definition Data Practices. The American Society of Mechanical Engineers, New York (2012)ISO: ISO 16792:2006 Technical Product Documentation – Digital Product Definition Data Practices. Organisation Internationale de Normalisation, Genève, Suisse (2006)Bracewell, R.H., Wallace, K.M.: A Tool for Capturing Design Rationale. In:14th International Conference on Engineering Design, Design Society, Stockholm, Sweden (2003)Boujut, J.F., Dugdale, J.: Design of a 3D Annotation Tool for Supporting Evaluation Activities in Engineering Design. Cooperative Systems Design, COOP 6, 1–8 (2006)Alducin-Quintero, G., Rojo, A., Plata, F., Hernández, A., Contero, M.: 3D Model Annotation as a Tool for Improving Design Intent Communication: A Case Study on its Impact in the Engineering Change Process. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago, Illinois (2012)Sandberg, S., Näsström, M.: A Proposed Method to Preserve Knowledge and Information by Use of Knowledge Enabled Engineering. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, Nevada (2007)Dorribo-Camba, J., Alducin-Quintero, G., Perona, P., Contero, M.: Enhancing Model Reuse through 3D Annotations: A Theoretical Proposal for an Annotation-Centered Design Intent and Design Rationale Communication. In: ASME International Mechanical Engineering Congress & Exposition, San Diego, California (2013)Ding, L., Ball, A., Patel, M., Matthews, J., Mullineux, G.: Strategies for the Collaborative Use of CAD Product Models. In: 17th International Conference on Engineering Design, vol. 8, pp. 123–134 (2009)Davies, D., McMahon, C.A.: Multiple Viewpoint Design Modelling through Semantic Markup. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Philadelphia, PA, vol. 3, pp. 561–571 (2006)Pena-Mora, F., Sriram, D., Logcher, R.: SHARED-DRIMS: SHARED Design Recommendation-Intent Management System. Enabling Technologies: Infrastructure for Collaborative Enterprises, 213–221 (1993)Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Shape-based Searching for Product Lifecycle Applications. Computer-Aided Design 37(13), 1435–1446 (2005)Li, C., McMahon, C., Newnes, L.: Annotation in Product Lifecycle Management: A Review of Approaches. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 2, pp. 797–806 (2009)Ding, L., Liu, S.: Markup in Engineering Design: A Discourse. Future Internet 2, 74–95 (2010)Patel, M., Ball, A., Ding, L.: Curation and Preservation of CAD Engineering Models in Product Lifecycle Management. In: Conference on Virtual Systems and Multimedia Dedicated to Digital Heritage, University of Bath, pp. 59–66 (2008)Ding, L., Davies, D., McMahon, C.A.: The Integration of Lightweight Representation and Annotation for Collaborative Design Representation. Research in Engineering Design 20(3), 185–200 (2009)Patel, M., Ball, A., Ding, L.: Strategies for the Curation of CAD Engineering Models. International Journal of Digital Curation 4(1), 84–97 (2009)Ganeshan, R., Garrett, J., Finger, S.: A Framework for Representing Design Intent. Design Studies 15(1), 59–84 (1994)Myers, K., Zumel, N., Garcia, P.: Acquiring Design Rationale Automatically. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 14(2), 115–135 (2000)Kunz, W., Rittel, H.: Issues as Elements of Information Systems. Working paper 131. Center for Planning and Development Research, Berkeley (1970)Shum, S.J.B., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B., Nuseibeh, B.: Hypermedia Support for Argumentation-Based Rationale: 15 Years on from Gibis and Qoc. Rationale Management in Software Engineering, 111–132 (2006)Sung, R., Ritchie, J.M., Rea, H.J., Corney, J.: Automated Design Knowledge Capture and Representation in Single-User CAD Environments. J. of Eng. Design 22(7), 487–503 (2011)Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horváth, I., Bernard, A., Harik, R.F., Gao, W.: The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems. Computer-Aided Design 45(2), 204–228 (2013)Ellis, G., Dix, A.: A Taxonomy of Clutter Reduction for Information Visualisation. IEEE Transactions on Visualization and Computer Graphics 13(6), 1216–1223 (2007)Cipriano, G., Gleicher, M.: Text Scaffolds for Effective Surface Labeling. IEEE Transactions on Visualization and Computer Graphics 14(6), 1675–1682 (2008)Stein, T., Décoret, X.: Dynamic Label Placement for Improved Interactive Exploration. In: 6th International Symposium on Non-Photorealistic Animation and Rendering, pp. 15–21 (2008)Götzelmann, T., Hartmann, K., Strothotte, T.: Agent-Based Annotation of Interactive 3D Visualizations. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 24–35. Springer, Heidelberg (2006)Szykman, S., Sriram, R., Regli, W.: The Role of Knowledge in Next-Generation Product Development Systems. J. of Computing and Inf. Science in Engineering 1(1), 3–11 (2001)Aubry, S., Thouvenin, I., Lenne, D., Olive, J.: A Knowledge Model to Read 3D Annotations on a Virtual Mock-up for Collaborative Design. In: 11th International Conference on Computer Supported Cooperative Work in Design, pp. 669–674 (2007)Jung, T., Gross, M.D., Do, E.Y.L.: Sketching Annotations in a 3D Web Environment. In: CHI 2002, Extended Abstracts on Human Factors in Computing Systems, pp. 618–619 (2002)Bilasco, I.M., Gensel, J., Villanova-Oliver, M., Martin, H.: An MPEG-7 Framework Enhancing the Reuse of 3D Models. In: 11th International Conference on 3D Web Technology, Columbia, Maryland (2006)Pittarello, F., De Faveri, A.: Semantic Description of 3D Environments: A Proposal Based on Web Standards. In: 11th International Conference on 3D Web Technology, Columbia, Maryland (2006)Song, H., Guimbretière, F., Hu, C., Lipson, H.: ModelCraft: Capturing Freehand Annotations and Edits on Physical 3D Models. In: 19th Annual ACM Symposium on User Interface Software and Technology, pp. 13–22 (2006

    Use of tangible marks with optical frame interactive surfaces in collaborative design scenarios based on blended spaces

    Full text link
    [EN] Teamwork is habitual in engineering and industrial design projects, and it is particularly beneficial in the early stages of design in which the creativity plays a major role. In fact, many creativity techniques only make sense if they are developed in multidisciplinary work groups. In these early stages communication and exchange of ideas between the members of a team plays a key role, and therefore a major concern in this first working sessions is to avoid introducing barriers that may impair the communication process. Technology undoubtedly improves the exchange of information between team members, however sometimes can be a barrier in the early creative stages where communication must be direct and personal. Meetings where designers sit around a table to discuss or generate new ideas following some method of creativity (brainstorming, etc...) are usual. In this way the systems based on Natural Interfaces play a determinant role by enabling to hide the technology, making it transparent to the users, avoiding learning curves and thus interfering as little as possible in the creative process, but nonetheless exploiting the advantages that technology offers.Salvador Herranz, GM.; Contero, M.; Camba, J. (2014). Use of tangible marks with optical frame interactive surfaces in collaborative design scenarios based on blended spaces. Lecture Notes in Computer Science. 8683:253-260. doi:10.1007/978-3-319-10831-5_37S2532608683Benyon, D.: Presence in blended spaces. Interacting with Compututers 24(4), 219–226 (2012)Hoshi, K., Öhberg, F., Nyberg, A.: Designing blended reality space: conceptual foundations and applications. In: Proceedings of the 25th BCS Conference on Human-Computer Interaction, pp. 217–226 (2011)Müller, D.: Mixed reality systems. International Journal of Emerging Technologies in Learning (iJET) 5 (S2) (2009)Benyon, D., Mival, O.: Blended spaces for collaborative creativity. In: Proceedings of Workshop on Designing Collaborative Interactive Spaces, AVI 2012 (2012)Müller-Tomfelde, C. (ed.): Tabletops - Horizontal Interactive Displays. Springer, London (2010) ISBN 978-1-84996-113-4Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits and atoms. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 1997), pp. 234–241 (1997), doi: 10.1145/258549 .258715Ishii, H.: Tangible user interfaces. In: Sears, A., Jacko, J.A. (eds.) The Human-Computer Interaction Handbook. Fundamentals, Evolving Technologies, and Emerging Applications, pp. 469–487 (2007)Patten, J., Recht, B., Ishii, H.: Interaction Techniques for Musical Performance with Tabletop Tangible Interfaces. In: Advances in Computer Entertainment (2006)Jordà, S., Geiger, G., Alonso, M., Kaltenbrunner, M.: The Reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In: Proceedings of the 1st International Conference on Tangible and Embedded Interaction, pp. 139–146 (2007)Veltkamp, R.C.: Shape matching: Similarity measures and algorithms. In: International Conference on Shape Modeling and Applications, SMI 2001, pp. 188–197 (2001)Arkin, E.M., Paul, L., Keden, K., Mitchell, J.: An Efficiently Computable Metric for Comparing Poygonal Shapes. Technical Report 89-1007. Department of Computer Science. Cornell University (1989)Salvador, G., Bañó, M., Pérez, D., Contero, M.: A distributed collaborative learning tool based on a conceptual map paradigm and natural interfaces applied to the case of product design studies. In: Proceedings of the Research in Engineering Education Symposium (2003)Kaltenbrunner, M., Bovermann, T., Bencina, R., Costanza, E.: TUIO - A protocol for table-top tangible user interfaces. In: Proceedings of the 6th International Workshop on Gesture in Human-Computer Interaction and Simulation (2005

    Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species

    Get PDF
    Several mosquito population suppression strategies based on the rearing and release of sterile males have provided promising results. However, the lack of an efficient male selection method has hampered the expansion of these approaches into large-scale operational programmes. Currently, most of these programmes targeting Aedes mosquitoes rely on sorting methods based on the sexual size dimorphism (SSD) at the pupal stage. The currently available sorting methods have not been developed based on biometric analysis, and there is therefore potential for improvement. We applied an automated pupal size estimator developed by Grupo Tragsa with laboratory samples of Anopheles arabiensis, Aedes albopictus, Ae. polynesiensis, and three strains of Ae. aegypti. The frequency distribution of the pupal size was analyzed. We propose a general model for the analysis of the frequency distribution of mosquito pupae in the context of SSD-sorting methods, which is based on a Gaussian mixture distribution functions, thus making possible the analysis of performance (% males recovery) and purity (% males on the sorted sample).Veterinari

    Standardization of the FAO/IAEA Flight Test for Quality Control of Sterile Mosquitoes

    Get PDF
    [EN] Successful implementation of the sterile insect technique (SIT) against Aedes aegypti and Aedes albopictus relies on maintaining a consistent release of high-quality sterile males. Affordable, rapid, practical quality control tools based on the male's flight ability (ability to escape from a flight device) may contribute to meeting this requirement. Therefore, this study aims to standardize the use of the original FAO/IAEA rapid quality control flight test device (FTD) (version 1.0), while improving handling conditions and reducing the device's overall cost by assessing factors that could impact the subsequent flight ability of Aedes mosquitoes. The new FTD (version 1.1) is easier to use. The most important factors affecting escape rates were found to be tube color (or "shade"), the combined use of a lure and fan, mosquito species, and mosquito age and density (25; 50; 75; 100 males). Other factors measured but found to be less important were the duration of the test (30, 60, 90, 120 min), fan speed (normal 3000 rpm vs. high 6000 rpm), and mosquito strain origin. In addition, a cheaper version of the FTD (version 2.0) that holds eight individual tubes instead of 40 was designed and successfully validated against the new FTD (version 1.1). It was sensitive enough to distinguish between the effects of cold stress and high irradiation dose. Therefore, the eight-tube FTD may be used to assess Aedes' flight ability. This study demonstrated that the new designs (versions 1.1 and 2.0) of the FTD could be used for standard routine quality assessments of Aedes mosquitoes required for an SIT and other male release-based programs.The authors are grateful to Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Spain, and to Wolbaki, China, for donating their strain for testing. They are grateful to the two reviewers for their useful comments/suggestions that improved our manuscript. This research was funded by the United States of America under the grant to the IAEA entitled ¿Surge expansion for the sterile insect technique to control mosquito populations that transmit the Zika virus.¿ The funders and the agency had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.Maïga, H.; Lu, D.; Mamai, W.; Somda, NSB.; Wallner, T.; Bakhoum, MT.; Masso, OB.... (2022). Standardization of the FAO/IAEA Flight Test for Quality Control of Sterile Mosquitoes. Frontiers in Bioengineering and Biotechnology. 10:1-14. https://doi.org/10.3389/fbioe.2022.8766751141

    Synchronous communication in PLM environments using annotated CAD models

    Full text link
    The connection of resources, data, and knowledge through communication technology plays a vital role in current collaborative design methodologies and Product Lifecycle Management (PLM) systems, as these elements act as channels for information and meaning. Despite significant advances in the area of PLM, most communication tools are used as separate services that are disconnected from existing development environments. Consequently, during a communication session, the specific elements being discussed are usually not linked to the context of the discussion, which may result in important information getting lost or becoming difficult to access. In this paper, we present a method to add synchronous communication functionality to a PLM system based on annotated information embedded in the CAD model. This approach provides users a communication channel that is built directly into the CAD interface and is valuable when individuals need to be contacted regarding the annotated aspects of a CAD model. We present the architecture of a new system and its integration with existing PLM systems, and describe the implementation details of an annotation-based video conferencing module for a commercial CAD application.This work was supported by the Spanish Ministry of Economy and Competitiveness and the FEDER Funds, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).Camba, JD.; Contero, M.; Salvador Herranz, GM.; Plumed, R. (2016). Synchronous communication in PLM environments using annotated CAD models. Journal of Systems Science and Systems Engineering. 25(2):142-158. https://doi.org/10.1007/s11518-016-5305-5S142158252Abrahamson, S., Wallace, D., Senin, N. & Sferro, P. (2000). Integrated design in a service marketplace. Computer-Aided Design, 32(2):97–107.Ahmed, S. (2005). Encouraging reuse of design knowledge: a method to index knowledge. Design Studies, 26:565–592.Alavi, M. & Tiwana, A (2002). Knowledge integration in virtual teams: the potential role of KMS. Journal of the American Society for Information Science and Technology, 53:1029–1037.Ameri, F. & Dutta, D. (2005). Product lifecycle management: closing the knowledge loops. Computer-Aided Design and Applications, 2(5):577–590.Anderson, A.H., Smallwood, L., MacDonald, R., Mullin, J., Fleming, A. & O'Malley, C. (2000). Video data and video links in mediated communication: what do users value? International Journal of Human-Computer Studies, 52(1):165–187.Arias, E., Eden, H., Fischer, G., Gorman, A. & Scharff, E. (2000). Transcending the individual human mind–creating shared understanding through collaborative design. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1): 84–113.Barley, W.C., Leonardi, P.M., & Bailey, D.E. (2012). Engineering objects for collaboration: strategies of ambiguity and clarity at knowledge boundaries. Human Communication Research, 38:280–308.Boujut, J.F. & Dugdale, J. (2006). Design of a 3D annotation tool for supporting evaluation activities in engineering design. Cooperative Systems Design, COOP 6:1–8.Camba, J., Contero, M., Johnson, M. & Company, P. (2014). Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability. Computer-Aided Design, 57:61–73.Camba, J., Contero, M. & Salvador-Herranz, G. (2014). Speak with the annotator: promoting interaction in a knowledge-based CAD environment built on the extended annotation concept. Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 196–201.Chudoba, K.M., Wynn, E., Lu, M. & Watson-Manheim, M.B. (2005). How virtual are we? Measuring virtuality and understanding its impact in a global organization. Information Systems Journal, 15(4):279–306.Danesi, F., Gardan, N. & Gardan, Y. (2006). Collaborative Design: from Concept to Application. Geometric Modeling and Imaging—New Trends, 90–96.Durstewitz, M., Kiefner, B., Kueke, R., Putkonen, H., Repo, P. & Tuikka, T. (2002). Virtual collaboration environment for aircraft design. Proceedings of the IEEE 6th International Conference on Information Visualisation, 502–507.Fisher, D., Brush, A.J., Gleave, E. & Smith, M.A. (2006). Revisiting Whittaker and Sidner’s email overload ten years later. Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work. ACM, BanffFonseca, M.J., Henriques, E., Silva, N., Cardoso, T. & Jorge, J.A. (2006). A collaborative CAD conference tool to support mobile engineering. Rapid Product Development (RPD’06), Marinha Grande, Portugal.Frechette, S.P. (2011). Model based enterprise for manufacturing. Proceedings of the 44th CIRP International Conference on Manufacturing Systems.Fu, W.X., Bian, J. & Xu, Y.M. (2013). A video conferencing system for collaborative engineering design. Applied Mechanics and Materials, 344:246–252.Fuh, J.Y.H. & Li, W.D. (2005). Advances in collaborative CAD: the-state-of-the art. Computer-Aided Design, 37:571–581.Fussell, S.R., Kraut, R.E. & Siegel, J. (2000). Coordination of communication: effects of shared visual context on collaborative work. Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, 21–30.Gajewska, H., Kistler, J., Manasse, M.S. & Redell, D. (1994). Argo: a system for distributed collaboration. Proceedings of the ACM Second International Conference on Multimedia, San Francisco, CA, USA. 433–440.Gantz, J., Reinsel, D., Chute, C., Schlichting, W., Mcarthur, J., Minton, S., Xheneti, I., Toncheva, A. & Manfrediz, A. (2007). The expanding digital universe: a forecast of worldwide information growth through 2010. IDC, Massachusetts.Gowan, Jr. J.A. & Downs, J.M. (1994). Video conferencing human-machine interface: a field study. Information and Management, 27(6):341–356.Gupta, A., Mattarelli, E., Seshasai, S. & Broschak, J. (2009). Use of collaborative technologies and knowledge sharing in co-located and distributed teams: towards the 24-h knowledge factory. The Journal of Strategic Information Systems, 18:147–161.Hickson, I. (2009). The Web Socket Protocol IETF, Standards Track.Hong, J., Toye, G. & Leifer, L.J. (1996). Engineering design notebook for sharing and reuse. Computers in Industry, 29:27–35.Isaacs, E.A. & Tang, J.C. (1994). What video can and cannot do for collaboration: a case study. Multimedia Systems, 2(2):63–73.Karsenty, L. (1999). Cooperative work and shared visual context: an empirical study of comprehension problems in side-by-side and remote help dialogues. Human Computer Interaction, 14(3): 283–315.Lahti, H., Seitamaa-Hakkarainen, P. & Hakkarainen, K. (2004). Collaboration patterns in computer supported collaborative designing. Design Studies, 25:351–371.Leenders, R.T.A., Van Engelen, J.M. & Kratzer, J. (2003). Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 20(1):69–92.Levitt, R.E., Jin, Y. & Dym, C.L. (1991). Knowledge-based support for management of concurrent, multidisciplinary design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 5(2):77–95.Li, C., McMahon, C. & Newnes, L. (2009). Annotation in product lifecycle management: a review of approaches. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009. Vol. 2. New York: ASME, 797–806.Li, W.D., Lu, W.F., Fuh, J.Y. & Wong, Y.S. (2005). Collaborative computer-aided design-research and development status. Computer-Aided Design, 37(9):931–940.Londono, F., Cleetus, K.J., Nichols, D.M., Iyer, S., Karandikar, H.M., Reddy, S.M., Potnis, S.M., Massey, B., Reddy, A. & Ganti, V. (1992). Coordinating a virtual team. CERC-TR-RN-92-005, Concurrent Engineering Research Centre, West Virginia University, West Virginia.Lubell, J., Chen, K., Horst, J., Frechette, S., & Huang, P. (2012). Model based enterprise/technical data package summit report. NIST Technical Note, 1753.May, A. & Carter, C. (2001). A case study of virtual team working in the European automotive industry. International Journal of Industrial Ergonomics, 27(3):171–186.Olson, J.S., Olson, G.M. & Meader, D.K. (1995). What mix of video and audio is useful for small groups doing remote real-time design work? Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, Addison-Wesley Publishing Co.Ping-Hung, H., Mishra, C.S. & Gobeli, D.H. (2003). The return on R&D versus capital expenditures in pharmaceutical and chemical industries. IEEE Transactions on Engineering Management, 50:141–150.Sharma, A. (2005). Collaborative product innovation: integrating elements of CPI via PLM framework. Computer-Aided Design, 37(13):1425–1434.Shum, S.J.B., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B. & Nuseibeh, B. (2006). Hypermedia support for argumentation-based rationale: 15 Years on from Gibis and Qoc. Rationale Management in Software Engineering, 111–132.Siltanen, P. & Valli, S. (2013). Web-based 3D Mediated Communication in Manufacturing Industry. Concurrent Engineering Approaches for Sustainable Product Development in a Multidisciplinary Environment, 1181–1192. Springer London.Stark, J. (2011). Product Lifecycle Management. 1–16. Springer London.Tavcar, J., Potocnik, U. & Duhovnik, J. (2013). PLM used as a backbone for concurrent engineering in supply chain. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment, 681–692.Tay, F.E.H. & Ming, C. (2001). A shared multi-media design environment for concurrent engineering over the internet. Concurrent Engineering, 9(1):55–63.Tay, F.E.H. & Roy, A. (2003). CyberCAD: a collaborative approach in 3D-CAD technology in a multimedia-supported environment. Computers in Industry, 52(2):127–145.Toussaint, J. & Cheng, K. (2002). Design agility and manufacturing responsiveness on the web. Integrated Manufacturing Systems, 13(5):328–339.Tsoi, K.N. & Rahman, S.M. (1996). Media-on-demand multimedia electronic mail: a tool for collaboration on the web. Proceedings of the 5th IEEE International Symposium on High Performance Distributed Computing.Upton, D.M. & Mcafee, A. (1999). The Real Virtual Factory. Harvard Business School Press, 69–89.Vila, C., Estruch, A., Siller, H.R., Abellán, J.V. & Romero, F. (2007). Workflow methodology for collaborative design and manufacturing. Cooperative Design, Visualization, and Engineering 42–49, Springer Berlin Heidelberg.Wasiak, J., Hicks, B., Newnes, L., Dong, A., & Burrow, L. (2010). Understanding engineering email: the development of a taxonomy for identifying and classifying engineering work. Research in Engineering Design, 21(1):43–64.Wasko, M.M. & Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly: Management Information Systems, 29:35–57.Yang, Q.Z., Zhang, Y., Miao, C.Y. & Shen, Z.Q. (2008). Semantic annotation of digital engineering resources for multidisciplinary design collaboration. ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 617–624. American Society of Mechanical Engineers.You, C.F. & Chao, S.N. (2006). Multilayer architecture in collaborative environment. Concurrent Engineering Research and Applications, 14(4):273–281.Yuan, Y.C., Fulk, J., Monge, P.R. & Contractor, N. (2010). Expertise directory development, shared task interdependence, and strength of communication network ties as multilevel predictors of expertise exchange in transactive memory work groups. Communication Research, 37: 20–47

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Diseño e implementación de espacios distribuidos de aprendizaje colaborativo mediante la utilización de grandes superficies interactivas y elementos tangibles

    Full text link
    [EN] The development of technology has undoubtedly impacted positively in the educational process, mainly by offering new forms of access, organization and understanding of information, and new ways of communication between students and teachers to facilitate the implementation of educational paradigms based on constructivism and collaborative learning. However, at the same time technology can result in a barrier in the teaching / learning process, since it can create interferences in it. In response to this problem, this thesis aims to provide new solutions based on the use of Natural User Interfaces, which allows exploiting the potential of technology in the educational process, maximum avoiding any interference in it. In the search for a solution, it was decided to explore solutions based on the use of interactive digital surfaces, also known as "tabletop" systems. This type of devices provides a natural interface through which users can interact with the system via gestures with his hands. This type of system is suitable for collaborative learning tasks, by allowing simultaneous work of several students around the device, providing a "face to face" communication way between them. Although this type of devices have previously been used in educational environments, their integration in the classroom has not been transparent enough, which still generates interferences in the educational process. In this sense, one of the main objectives of the thesis has been to integrate this type of technology in the classroom ubiquitously. For this task, systems that allow to implement mixed reality space, a subset of the broader concept of ubiquitous computing, which allows integration of technology in the classroom, but making it go unnoticed. Additionally, it has been developed and evaluated an architecture that allows the extension of the collaborative workspaces, that are established between students locally around an interactive digital surface, in a distributed model that allows the interconnection of different devices, which can be found in remote locations. Unlike other solutions, this technology allows designing complex schemes of classroom orchestration in a natural and simply way, hiding the complexity of the system both to students and teachers. Regarding to this, in order to simplify the processes of handling and exchange of information between the different working groups, the system was provided with interaction capacity meanwhile the use of tangible information handlers. In parallel, we developed a novel method and technology that allows the use of passive elements on tangible handlers over digital interactive surfaces implemented with optical frames technology. Furthermore, in order to achieve the maximum simplification in the information management processes, the system has been provided with multiple pathways for the addition of new contents, contributing to the generation of Blended Spaces. In this way, following a BYOD ("Bring Your Own Device") strategy, the system allows the use of any smartphone or similar device, to add new information to the digital space. Finally, a remarkable aspect of the thesis is that previous systems have been rigorously evaluated on numerous real educational contexts, from the point of view of three parameters: efficiency, motivation and usability.[ES] El desarrollo de la tecnología ha repercutido indudablemente de forma positiva en los procesos educativos, ofreciendo principalmente nuevas formas de acceso, organización y entendimiento de la información, y nuevas vías de comunicación entre alumnos y profesores que facilitan la implementación de paradigmas educativos basados en ideas constructivistas y aprendizaje colaborativo. Sin embargo, la tecnología puede suponer al mismo tiempo una barrera en el proceso de enseñanza/aprendizaje, en cuanto a que puede crear interferencias en el mismo. En respuesta a esta problemática, en esta tesis se pretende aportar soluciones basadas en la utilización de Interfaces Naturales de Usuario, que permitan un aprovechamiento de las posibilidades de la tecnología en el proceso educativo, evitando al máximo cualquier tipo de interferencia en el mismo. En la búsqueda de una solución, se ha optado por la exploración de sistemas basados en superficies digitales interactivas, también conocidas como "tabletops". Este tipo de dispositivos ofrece una interfaz natural mediante la cual los usuarios pueden interaccionar con el sistema realizando gestos con sus propias manos, de manera similar a como se trabajaría sobre una mesa o superficie de trabajo real. Adicionalmente, este tipo de sistemas resulta idóneo en tareas de aprendizaje colaborativo, gracias a que permiten el trabajo simultáneo de varios estudiantes facilitando una comunicación en la forma "cara a cara", de igual modo a como se establecería sobre una mesa de trabajo convencional. Aunque este tipo de dispositivos ha sido previamente utilizado en entornos educativos, su integración en las aulas no ha sido transparente, lo cual sigue generando interferencias. En este sentido, uno de los principales objetivos de la tesis ha sido integrar este tipo de tecnología en las propias aulas de forma ubicua. Para ello se han diseñado y desarrollado sistemas que permiten implementar Espacios de Realidad Mezclada, un subconjunto del concepto más amplio de computación ubicua, los cuales permiten integrar la tecnología en las aulas consiguiendo al mismo tiempo que pase desapercibida. Adicionalmente, se ha desarrollado una arquitectura que permite la extensión de estos espacios de trabajo colaborativo en un modelo distribuido, que permite la interconexión simultanea de distintos dispositivos, los cuales se pueden encontrar en ubicaciones remotas. A diferencia de otras soluciones, el modelo propuesto permite diseñar complejas orquestaciones de aula de forma sencilla y natural, ocultando la complejidad del sistema tanto a alumnos como a profesores. A este respecto, con el objetivo de simplificar los procesos de manejo e intercambio de información entre los distintos grupos de trabajo, se ha dotado al sistema de la capacidad de interacción mediante la utilización de manipuladores tangibles de información. De forma paralela, se ha desarrollado un novedoso método y tecnología que permite definir y utilizar elementos tangibles pasivos sobre superficies digitales interactivas implementadas mediante marcos ópticos. Por otra parte, con el objetivo de lograr la máxima simplificación en los procesos de manejo de la información, el sistema ofrece múltiples vías de introducción de nuevos contenidos, ofreciendo formas y métodos que permiten la digitalización de la información de una forma sencilla y natural, estableciendo una relación sencilla y transparente entre el mundo real y el virtual, contribuyendo de este modo a la generación de los Espacios de Realidad Mezclada. En la misma línea, siguiendo una estrategia BYOD ("Bring Your Own Device"), el sistema permite la utilización de cualquier dispositivo smartphone, o similar, para la adición de nueva información. Finalmente, un aspecto destacable de la tesis ha consistido en la evaluación de forma rigurosa de los anteriores sistemas sobre numerosos contextos educativos reales, desde el punto de vista de tres parám[CA] El desenrotllament de la tecnologia ha repercutit indubtablement de forma positiva en els processos educatius, oferint principalment noves formes d'accés, organització i enteniment de la informació, i noves vies de comunicació entre alumnes i professors que faciliten la implementació de paradigmes educatius basats en idees constructivistes i aprenentatge col¿laboratiu. No obstant això, la tecnologia pot suposar al mateix temps una barrera en el procés d'enseñanza/aprendizaje, en el fet que pot crear interferències en el mateix. En resposta a esta problemàtica, en esta tesi es pretén aportar solucions basades en la utilització d'Interfícies Naturals d'Usuari, que permeten un aprofitament de les possibilitats de la tecnologia en el procés educatiu, evitant al màxim qualsevol tipus d'interferència en el mateix. En la busca d'una solució, s'ha optat per l'exploració de sistemes basats en superfícies digitals interactives, també conegudes com "tabletops". Este tipus de dispositius oferix una interfície natural per mitjà de la qual els usuaris poden interaccionar amb el sistema realitzant gestos amb les seues pròpies mans, de manera semblant a com es treballaria sobre una taula o superfície de treball real. Addicionalment, este tipus de sistemes resulta idoni en tasques d'aprenentatge col¿laboratiu, gràcies a què permeten el treball simultani de diversos estudiants facilitant una comunicació en la forma "cara a cara", de la mateixa manera a com s'establiria sobre una taula de treball convencional. Encara que este tipus de dispositius ha sigut prèviament utilitzat en entorns educatius, la seua integració en les aules no ha sigut transparent, la qual cosa continua generant interferències. En este sentit, un dels principals objectius de la tesi ha sigut integrar este tipus de tecnologia en les pròpies aules de forma ubiqua. Per a això s'han dissenyat i desenrotllat sistemes que permeten implementar Espais de Realitat Mesclada, un subconjunt del concepte més ampli de computació ubiqua, els quals permeten integrar la tecnologia en les aules aconseguint alhora que passe desapercebuda. Addicionalment, s'ha desenrotllat una arquitectura que permet l'extensió d'estos espais de treball col¿laboratiu en un model distribuït, que permet la interconnexió simultanieja de distints dispositius, els quals es poden trobar en ubicacions remotes. A diferència d'altres solucions, el model proposat permet dissenyar complexes orquestracions d'aula de forma senzilla i natural, ocultant la complexitat del sistema tant a alumnes com a professors. A este respecte, amb l'objectiu de simplificar els processos de maneig i intercanvi d'informació entre els distints grups de treball, s'ha dotat al sistema de la capacitat d'interacció per mitjà de la utilització de manipuladors tangibles d'informació. De forma paral¿lela, s'ha desenrotllat un nou mètode i tecnologia que permet definir i utilitzar elements tangibles passius sobre superfícies digitals interactives implementades per mitjà de marcs òptics. D'altra banda, amb l'objectiu d'aconseguir la màxima simplificació en els processos de maneig de la informació, el sistema oferix múltiples vies d'introducció de nous continguts, oferint formes i mètodes que permeten la digitalització de la informació d'una forma senzilla i natural, establint una relació senzilla i transparent entre el món real i el virtual, contribuint d'esta manera a la generació dels Espais de Realitat Mesclada. En la mateixa línia, seguint una estratègia BYOD ("Bring Your Own Device") , el sistema permet la utilització de qualsevol dispositiu smartphone, o semblant, per a l'addició de nova informació. Finalment, un aspecte destacable de la tesi ha consistit en l'avaluació de forma rigorosa dels anteriors sistemes sobre nombrosos contextos educatius reals, des del punt de vista de tres paràmetres: eficiència, motivació i usabilidad.Salvador Herranz, GM. (2016). Diseño e implementación de espacios distribuidos de aprendizaje colaborativo mediante la utilización de grandes superficies interactivas y elementos tangibles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63269TESI

    All-in-One Mosquito Containers: From the Laboratory to the Release Sites

    Full text link
    Integrated vector control programs that use a Sterile Insect Technique approach require the production and release of large numbers of high quality, sterile male insects. In pilot projects conducted worldwide, sterile males are usually kept in containers at low densities until their manual release on the ground. Although the quality of the released insects is high, these containers are only suitable for small-scale projects, given the fact that the manual labor required for release is significant and therefore untenable in large-scale projects. This study will compare and contrast the quality of the males reared in the proposed “all-in-one” containers which considerably reduce both the handling of the insects and the manual labor required for release. As a result, project costs are lower. The design of these “all-in-one” containers incorporates two important features: ventilation and the density of the vertical resting surface. Having evaluated both features, it can be concluded that ventilation does not directly affect the quality of the insects, at least in the range of dimensions tested. However, the quality of the male insects is reduced in relation to an increase in the number of mosquitoes, with 500 being the optimum quantity of mosquitoes per “all-in-one” container

    Reducing the cost and assessing the performance of a novel adult mass-rearing cage for the dengue, chikungunya, yellow fever and Zika vector, Aedes aegypti (Linnaeus).

    Full text link
    INTRODUCTION:The widespread emergence of resistance to insecticides used to control adult Aedes mosquitoes has made traditional control strategies inadequate for the reduction of various vector populations. Therefore, complementary vector control methods, such as the Sterile Insect Technique, are needed to enhance existing efforts. The technique relies on the rearing and release of large numbers of sterile males, and the development of efficient and standardized mass-rearing procedures and tools is essential for its application against medically important mosquitoes. METHODS:In the effort to reduce the cost of the rearing process, a prototype low-cost plexiglass mass-rearing cage has been developed and tested for egg production and egg hatch rate in comparison to the current Food and Agriculture Organization/International Atomic Energy Agency (FAO/IAEA) stainless-steel cage. Additionally, an adult-index was validated and used as a proxy to estimate the mosquito survival rates by counting the number of male and female mosquitoes that were resting within each of the 6 squares at a given point of time each day in the cage. RESULTS:The study has shown that the prototype mass-rearing cage is cheap and is as efficient as the FAO/IAEA stainless-steel cage in terms of egg production, with even better overall egg hatch rate. The mean numbers of eggs per cage, after seven cycles of blood feeding and egg collection, were 969,789 ± 138,101 and 779,970 ± 123,042, corresponding to 81 ± 11 and 65 ± 10 eggs per female over her lifespan, in the prototype and the stainless-steel-mass-rearing cages, respectively. The longevity of adult male and female mosquitoes was not affected by cage type and, the adult-index could be considered as an appropriate proxy for survival. Moreover, the mass-rearing cage prototype is easy to handle and transport and improves economic and logistic efficiency. CONCLUSION:The low-cost mass-rearing prototype cage can be recommended to produce Ae. aegypti in the context of rear and release techniques. The proposed adult-index can be used as a quick proxy of mosquito survival rates in mass-rearing settings

    HumanTop: a multi-object tracking tabletop

    Full text link
    In this paper, a computer vision based interactive multi-touch tabletop system called HumanTop is introduced. HumanTop implements a stereo camera vision subsystem which allows not only an accurate fingertip tracking algorithm but also a precise touch-over-the-working surface detection method. Based on a pair of visible spectra cameras, a novel synchronization circuit makes the camera caption and the image projection independent from each other, providing the minimum basis for the development of computer vision analysis based on visible spectrum cameras without any interference coming from the projector. The assembly of both cameras and the synchronization circuit is not only capable of performing an ad-hoc version of a depth camera, but it also introduces the recognition and tracking of textured planar objects, even when contents are projected over them. On the other hand HumanTop supports the tracking of sheets of paper and ID-code markers. This set of features makes the HumanTop a comprehensive, intuitive and versatile augmented tabletop that provides multitouch interaction with projective augmented reality on any flat surface. As an example to exploit all the capabilities of HumanTop, an educational application has been developed using an augmented book as a launcher to different didactic contents. A pilot study in which 28 fifth graders participated is presented. Results about efficiency, usability/satisfaction and motivation are provided. These results suggest that HumanTop is an interesting platform for the development of educational contents. © 2012 Springer Science+Business Media, LLC.This study was funded by Ministerio de Educacion y Ciencia Spain, Project SALTET (TIN2010-21296-C02-01), Project Game Teen (TIN2010-20187) projects Consolider-C (SEJ2006-14301/PSIC), "CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII" and Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educacio, 2008-157).Soto Candela, E.; Ortega Pérez, M.; Marín Romero, C.; Pérez López, DC.; Salvador Herranz, GM.; Contero, M.; Alcañiz Raya, ML. (2014). HumanTop: a multi-object tracking tabletop. Multimedia Tools and Applications. 70(3):1837-1868. https://doi.org/10.1007/s11042-012-1193-yS18371868703Agarwal A, Izadi S, Chandraker M, Blake A (2007) High precision multi-touch sensing on surfaces using overhead cameras. In: IEEE int. workshop horiz. interact. hum.-comput. interact., TABLETOP’07. IEEE, pp 197–200Alexa M, Bollensdorff B, Bressler I, Elstner S, Hahne U, Kettlitz N, Lindow N, Lubkoll R, Richter R, Stripf C et al (2008) Continuous reference images for ftir touch sensing. In: ACM SIGGRAPH poster. ACM, p 49Argyros A, Lourakis M (2006) Vision-based interpretation of hand gestures for remote control of a computer mouse. In: Comput. vis. hum.-comput. interact., pp 40–51Barnes C, Jacobs D, Sanders J, Goldman D, Rusinkiewicz S, Finkelstein A, Agrawala M (2008) Video puppetry: a performative interface for cutout animation. ACM Trans Graph (TOG) 27:124Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. O’Reilly MediaCampbell D, Stanley J, Gage N (1963) Experimental and quasi-experimental designs for research. Houghton Mifflin, BostonChen D, Zhang G (2005) A new sub-pixel detector for x-corners in camera calibration targets. In: 13th int. conf. cent. Eur. comput. graph., vis. comput. vis.Dietz P, Leigh D (2001) Diamondtouch: a multi-user touch technology. In: Proc. 14th ACM symp. user interface softw. technol. ACM, pp 219–226Do-Lenh S, Kaplan F, Sharma A, Dillenbourg P (2009) Multi-finger interactions with papers on augmented tabletops. In: Proc. 3rd int. conf. tangible embed. int. ACM, pp 267–274Dung L, Mizukawa M (2009) Fast hand feature extraction based on connected component labeling, distance transform and hough transform. J. Robot. Mechatronics 21(6):726–738Echtler F, Sielhorst T, Huber M, Klinker G (2009) A short guide to modulated light. In: Proc. 3rd int. conf. tang. embed. interact. ACM, pp 393–396Echtler F, Pototschnig T, Klinker G (2010) An led-based multitouch sensor for lcd screens. In: Proc. 4th int. conf. tang. embed. interact.. ACM, pp 227–230Han J (2005) Low-cost multi-touch sensing through frustrated total internal reflection. In: Proc. 18th ACM symp. user interface softw. technol. ACM, pp 115–118Holman D, Vertegaal R, Altosaar M, Troje N, Johns D (2005) Paper windows: interaction techniques for digital paper. In: Proc. SIGCHI conf. hum. factor comput. syst. ACM, pp 591–599Izadi S, Agarwal A, Criminisi A, Winn J, Blake A, Fitzgibbon A (2007) C-slate: a multi-touch and object recognition system for remote collaboration using horizontal surfaces. In: IEEE int. workshop horiz. interact. hum.-comput. interact., TABLETOP’07. IEEE, pp 3–10Jordà S, Geiger G, Alonso M, Kaltenbrunner M (2007) The reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In: Proc. 1st int. conf. tangible embed. interact. ACM, pp 139–146Kaltenbrunner M (2009) Reactivision and tuio: a tangible tabletop toolkit. In: Proc. ACM int. conf. interact. tabletop. surf. ACM, pp 9–16Katz I, Gabayan K, Aghajan H (2007) A multi-touch surface using multiple cameras. In: Proc. 9th int. conf. adv. concept. intell. vis. syst.. Springer, pp 97–108Kim K, Lepetit V, Woo W (2010) Scalable real-time planar targets tracking for digilog books. Vis Comput 26(6):1145–1154Lee T, Hollerer T (2007) Handy ar: markerless inspection of augmented reality objects using fingertip tracking. In: 11th IEEE int. symp. wearable comput. IEEE, pp 83–90Letessier J, Bérard F (2004) Visual tracking of bare fingers for interactive surfaces. In: Proc. 17th ACM symp. user interface softw. technol. ACM, pp 119–122Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:1–55Lucchese L, Mitra S (2002) Using saddle points for subpixel feature detection in camera calibration targets. In: Asian-Pac. conf. circuit. syst., vol 2. IEEE, pp 191–195Malik S, Laszlo J (2004) Visual touchpad: a two-handed gestural input device. In: Proc. 6th int. conf. multimodal interface. ACM, pp 289–296Manresa C, Varona J, Mas R, Perales F (2000) Real–time hand tracking and gesture recognition for human-computer interaction. In: Comput. vis. cent., pp 1–7Martín-Gutiérrez J, Luís Saorín J, Contero M, Alcañiz M, Pérez-López D, Ortega M (2010) Design and validation of an augmented book for spatial abilities development in engineering students. Comput Graph 34(1):77–91McNaughton J (2010) Utilising emerging multi-touch table designs. Durham UniversityMicrosoft (2011) Microsoft surface. URL http://www.microsoft.com/surface/Muja M, Lowe D (2009) Fast approximate nearest neighbors with automatic algorithm configuration. In: Int. conf. comput. vis. theory appl. VISSAPP, pp 331–340Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: IEEE Comput. Soc. conf. comput. vis. pattern recognit., vol 2. IEEE, pp 2161–2168Oka K, Sato Y, Koike H (2002) Real-time fingertip tracking and gesture recognition. IEEE Comput Graph 22(6):64–71OpenSource (2011) Fast sift image features library. URL http://libsift.sourceforge.net/Peer P, Kovac J, Solina F (2003) Human skin color clustering for face detection, vol 2. IEEEPilet J, Saito H (2010) Virtually augmenting hundreds of real pictures: an approach based on learning, retrieval, and tracking. In: IEEE virtual real. conf. (VR). IEEE, pp 71–78Rekimoto J (2002) Smartskin: an infrastructure for freehand manipulation on interactive surfaces. In: Proc. SIGCHI conf. hum. factor. comput. syst.. ACM, pp 113–120Shi J, Tomasi C (1994) Good features to track. In: IEEE comput. soc. conf. proc. comput. vis. pattern recognit. IEEE, pp 593–600Tomasi C, Kanade T (1991) Detection and tracking of point features. School of Computer Science, Carnegie Mellon UniversityVerdié Y (2008) Evolution of hand tracking algorithms to mirrortrack. Tech. Rep. Vis. Interface Syst. Lab.Vos N, van der Meijden H, Denessen E (2011) Effects of constructing versus playing an educational game on student motivation and deep learning strategy use. Comput Educ 56(1):127–137Wagner D, Reitmayr G, Mulloni A, Drummond T, Schmalstieg D (2010) Real-time detection and tracking for augmented reality on mobile phones. IEEE Trans Vis Comput Graph 16(3):355–368Welch G, Bishop G (1995) An introduction to the Kalman filter. University of North Carolina at Chapel Hill, CiteseerWilson A (2004) Touchlight: an imaging touch screen and display for gesture-based interaction. In: Proc. 6th int. conf. multimodal interface. ACM, pp 69–76Wilson A (2005) Playanywhere: a compact interactive tabletop projection-vision system. In: Proc. 18th ACM symp user interface softw. technol. ACM, pp 83–92Wilson A (2010) Using a depth camera as a touch sensor. In: ACM int. conf. interact. tabletop. surf. ACM, pp 69–72Zerofrog (2011) Libsiftfast. URL http://sourceforge.net/projects/libsiftZhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334Zhang Z, Wu Y, Shan Y, Shafer S (2001) Visual panel: virtual mouse, keyboard and 3d controller with an ordinary piece of paper. In: Proc. workshop percept. user interface. ACM, pp 1–
    corecore