134 research outputs found
Root endophytes and invasiveness: no difference between native and nonânative Phragmites in the Great Lakes Region
Microbial interactions could play an important role in plant invasions. If invasive plants associate with relatively more mutualists or fewer pathogens than their native counterparts, then microbial communities could foster plant invasiveness. Studies examining the effects of microbes on invasive plants commonly focus on a single microbial group (e.g., bacteria) or measure only plant response to microbes, not documenting the specific taxa associating with invaders. We surveyed root microbial communities associated with coâoccurring native and nonânative lineages of Phragmites australis, across Michigan, USA. Our aim was to determine whether (1) plant lineage was a stronger predictor of root microbial community composition than environmental variables and (2) the nonânative lineage associated with more mutualistic and/or fewer pathogenic microbes than the native lineage. We used microscopy and cultureâindependent molecular methods to examine fungal colonization rate and community composition in three major microbial groups (bacteria, fungi, and oomycetes) within roots. We also used microbial functional databases to assess putative functions of the observed microbial taxa. While fungal colonization of roots was significantly higher in nonânative Phragmites than the native lineage, we found no differences in root microbial community composition or potential function between the two Phragmites lineages. Community composition did differ significantly by site, with soil saturation playing a significant role in structuring communities in all three microbial groups. The relative abundance of some specific bacterial taxa did differ between Phragmites lineages at the phylum and genus level (e.g., Proteobacteria, Firmicutes). Purported function of root fungi and respiratory mode of root bacteria also did not differ between native and nonânative Phragmites. We found no evidence that native and nonânative Phragmites harbored distinct root microbial communities; nor did those communities differ functionally. Therefore, if the trends revealed at our sites are widespread, it is unlikely that total root microbial communities are driving invasion by nonânative Phragmites plants.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146836/1/ecs22526-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146836/2/ecs22526.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146836/3/ecs22526_am.pd
Legumeâmicrobiome interactions unlock mineral nutrients in regrowing tropical forests
Legume trees form an abundant and functionally important component of tropical forests worldwide with N2-fixing symbioses linked to enhanced growth and recruitment in early secondary succession. However, it remains unclear how N2-fixers meet the high demands for inorganic nutrients imposed by rapid biomass accumulation on nutrient-poor tropical soils. Here, we show that N2-fixing trees in secondary Neotropical forests triggered twofold higher in situ weathering of fresh primary silicates compared to non-N2âfixing trees and induced locally enhanced nutrient cycling by the soil microbiome community. Shotgun metagenomic data from weathered minerals support the role of enhanced nitrogen and carbon cycling in increasing acidity and weathering. Metagenomic and marker gene analyses further revealed increased microbial potential beneath N2-fixers for anaerobic iron reduction, a process regulating the pool of phosphorus bound to iron-bearing soil minerals. We find that the Fe(III)-reducing gene pool in soil is dominated by acidophilic Acidobacteria, including a highly abundant genus of previously undescribed bacteria, Candidatus Acidoferrum, genus novus. The resulting dependence of the Fe-cycling gene pool to pH determines the high iron-reducing potential encoded in the metagenome of the more acidic soils of N2-fixers and their nonfixing neighbors. We infer that by promoting the activities of a specialized local microbiome through changes in soil pH and C:N ratios, N2-fixing trees can influence the wider biogeochemical functioning of tropical forest ecosystems in a manner that enhances their ability to assimilate and store atmospheric carbon
Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data
Determining the routes of introduction provides not only information about the history of an invasion process, but also information about the origin and construction of the genetic composition of the invading population. It remains difficult, however, to infer introduction routes from molecular data because of a lack of appropriate methods. We evaluate here the use of an approximate Bayesian computation (ABC) method for estimating the probabilities of introduction routes of invasive populations based on microsatellite data. We considered the crucial case of a single source population from which two invasive populations originated either serially from a single introduction event or from two independent introduction events. Using simulated datasets, we found that the method gave correct inferences and was robust to many erroneous beliefs. The method was also more efficient than traditional methods based on raw values of statistics such as assignment likelihood or pairwise F(ST). We illustrate some of the features of our ABC method, using real microsatellite datasets obtained for invasive populations of the western corn rootworm, Diabrotica virgifera virgifera. Most computations were performed with the DIYABC program (http://www1.montpellier.inra.fr/CBGP/diyabc/)
Cryptic invasion drives phenotypic changes in central European threespine stickleback
Cryptic invasions are commonly associated with genetic changes of the native species or genetic lineage that the invaders replace. Phenotypic shifts resulting from cryptic invasions are less commonly reported given the relative paucity of historical specimens that document such phenotypic changes. Here, I study such a case in two populations of threespine stickleback from central Europe, comparing contemporary patterns of gene flow with phenotypic changes between historical and contemporary population samples. I find gene flow from an invasive lineage to be associated with significant phenotypic changes, where the degree of phenotypic change corresponds with the level of gene flow that a population receives. These findings underline the utility of combining genetic approaches with phenotypic data to estimate the impact of gene flow in systems where anthropogenic alterations have removed former geographic barriers promoting cryptic invasions
Effect of Population, Collection Year, After-Ripening and Incubation Condition on Seed Germination of \u3cem\u3eStipa bungeana\u3c/em\u3e
Knowledge of the germination behavior of different populations of a species can be useful in the selection of appropriate seed sources for restoration. The aim of this study was to test the effect of seed population, collection year, after-ripening and incubation conditions on seed dormancy and germination of Stipa bungeana, a perennial grass used for revegetation of degraded grasslands on the Loess Plateau, China. Fresh S. bungeana seeds were collected from eight locally-adapted populations in 2015 and 2016. Dormancy and germination characteristics of fresh and 6-month-old dry-stored seeds were determined by incubating them over a range of alternating temperature regimes in light. Effect of water stress on germination was tested for fresh and 6-month-old dry-stored seeds. Seed dormancy and germination of S. bungeana differed with population and collection year. Six months of dry storage broke seed dormancy, broadened the temperature range for germination and increased among-population differences in germination percentage. The rank order of germination was not consistent in all germination tests, and it varied among populations. Thus, studies on comparing seed dormancy and germination among populations must consider year of collection, seed dormancy states and germination test conditions when selecting seeds for grassland restoration and management
Super-Genotype: Global Monoclonality Defies the Odds of Nature
The ability to respond to natural selection under novel conditions is critical for the establishment and persistence of introduced alien species and their ability to become invasive. Here we correlated neutral and quantitative genetic diversity of the weed Pennisetum setaceum Forsk. Chiov. (Poaceae) with differing global (North American and African) patterns of invasiveness and compared this diversity to native range populations. Numerous molecular markers indicate complete monoclonality within and among all of these areas (FSTâ=â0.0) and is supported by extreme low quantitative trait variance (QSTâ=â0.00065â0.00952). The results support the general-purpose-genotype hypothesis that can tolerate all environmental variation. However, a single global genotype and widespread invasiveness under numerous environmental conditions suggests a super-genotype. The super-genotype described here likely evolved high levels of plasticity in response to fluctuating environmental conditions during the Early to Mid Holocene. During the Late Holocene, when environmental conditions were predominantly constant but extremely inclement, strong selection resulted in only a few surviving genotypes
Gardens of happiness: Sir William Temple, temperance and China
This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordSir William Temple, an English statesman and humanist, wrote âUpon the
Gardens of Epicurusâ in 1685, taking a neo-epicurean approach to happiness
and temperance. In accord with Pierre Gassendiâs epicureanism, âhappinessâ is
characterised as freedom from disturbance and pain in mind and body, whereas
âtemperanceâ means following nature (Providence and oneâs physiopsychological constitution). For Temple, cultivating fruit trees in his garden was
analogous to the threefold cultivation of temperance as a virtue in the humoral
body (as food), the mind (as freedom from the passions), and the bodyeconomic (as circulating goods) in order to attain happiness. A regimen that was
supposed to cure the malaise of Restoration amidst a crisis of unbridled
passions, this threefold cultivation of temperance underlines Templeâs reception
of China and Confucianism wherein happiness and temperance are highlighted.
Thus Templeâs âgardens of happinessâ represent not only a reinterpretation of
classical ideas, but also his dialogue with China.European CommissionLeverhulme Trus
Heteroplasmy due to chloroplast paternal leakage: another insight into Phragmites haplotypic diversity in North America
Chloroplasts contain several copies of their DNA, and intra-individual haplotypic variation (heteroplasmy) is common in plants, but unexplored in the cosmopolitan genus Phragmites. The aims of this study were to assess if heteroplasmy due to paternal leakage of the chloroplast occurs in Phragmites and which new insights into the evolutionary history of Phragmitesaustralis in North America can be identified from the heteroplasmic variation. Eight non-native P. australis haplotypes occur in North America and can interbreed with P. australis ssp. americanus and P. australis var. berlandieri, creating opportunities for biparental inheritance of distinctive haplotypes. The polymorphism in the trnT-trnL sequence length revealed seventeen cases of heteroplasmy worldwide, in contact zones of distantly related haplotypes and in known hybrid populations, nine of which occurred in North America. In America, the cloned sequences, combined with nuclear markers, identified recombined haplotypes between native P. australis ssp. americanus and invasive P. australis haplotype M, and between the species P. mauritianus and P. australis, due to chloroplast paternal leakage. The occurrence of heteroplasmy and recombined haplotypes suggest a local origin for some of the rare non-native haplotypes occurring in North America, and plastid leakage events in the evolutionary histories of P. australis ssp. americanus and P. australis var. berlandieri
- âŠ