151 research outputs found
WISE J163940.83-684738.6: A Y Dwarf identified by Methane Imaging
We have used methane imaging techniques to identify the near-infrared
counterpart of the bright WISE source WISEJ163940.83-684738.6. The large proper
motion of this source (around 3.0arcsec/yr) has moved it, since its original
WISE identification, very close to a much brighter background star -- it
currently lies within 1.5" of the J=14.90+-0.04 star 2MASS16394085-6847446.
Observations in good seeing conditions using methane sensitive filters in the
near-infrared J-band with the FourStar instrument on the Magellan 6.5m Baade
telescope, however, have enabled us to detect a near-infrared counterpart. We
have defined a photometric system for use with the FourStar J2 and J3 filters,
and this photometry indicates strong methane absorption, which unequivocally
identifies it as the source of the WISE flux. Using these imaging observations
we were then able to steer this object down the slit of the FIRE spectrograph
on a night of 0.6" seeing, and so obtain near-infrared spectroscopy confirming
a Y0-Y0.5 spectral type. This is in line with the object's
near-infrared-to-WISE J3--W2 colour. Preliminary astrometry using both WISE and
FourStar data indicates a distance of 5.0+-0.5pc and a substantial tangential
velocity of 73+-8km/s. WISEJ163940.83-684738.6 is the brightest confirmed Y
dwarf in the WISE W2 passband and its distance measurement places it amongst
the lowest luminosity sources detected to date.Comment: Accepted for publication in The Astrophysical Journal, 20 September
201
Fast and Slow Rotators in the Densest Environments: a SWIFT IFS study of the Coma Cluster
We present integral-field spectroscopy of 27 galaxies in the Coma cluster
observed with the Oxford SWIFT spectrograph, exploring the kinematic
morphology-density relationship in a cluster environment richer and denser than
any in the ATLAS3D survey. Our new data enables comparison of the kinematic
morphology relation in three very different clusters (Virgo, Coma and Abell
1689) as well as to the field/group environment. The Coma sample was selected
to match the parent luminosity and ellipticity distributions of the early-type
population within a radius 15' (0.43 Mpc) of the cluster centre, and is limited
to r' = 16 mag (equivalent to M_K = -21.5 mag), sampling one third of that
population. From analysis of the lambda-ellipticity diagram, we find 15+-6% of
early-type galaxies are slow rotators; this is identical to the fraction found
in the field and the average fraction in the Virgo cluster, based on the
ATLAS3D data. It is also identical to the average fraction found recently in
Abell 1689 by D'Eugenio et al.. Thus it appears that the average slow rotator
fraction of early type galaxies remains remarkably constant across many
different environments, spanning five orders of magnitude in galaxy number
density. However, within each cluster the slow rotators are generally found in
regions of higher projected density, possibly as a result of mass segregation
by dynamical friction. These results provide firm constraints on the mechanisms
that produce early-type galaxies: they must maintain a fixed ratio between the
number of fast rotators and slow rotators while also allowing the total
early-type fraction to increase in clusters relative to the field. A complete
survey of Coma, sampling hundreds rather than tens of galaxies, could probe a
more representative volume of Coma and provide significantly stronger
constraints, particularly on how the slow rotator fraction varies at larger
radii.Comment: Accepted for publication in MNRA
Extreme loss of immunoreactive p-Akt and p-Erk1/2 during routine fixation of primary breast cancer
INTRODUCTION: Very few studies have investigated whether the time elapsed between surgical resection and tissue fixation or the difference between core-cut and excision biopsies impact on immunohistochemically measured biomarkers, including phosphorylated proteins in primary breast cancer. The aim of this study was to characterise the differences in immunoreactivity of common biomarkers that may occur (1) as a result of tissue handling at surgery and (2) between core-cuts and resected tumours. METHODS: Core-cuts taken from surgical breast cancer specimens immediately after resection (sample A) and after routine X-ray of the excised tumour (sample B) were formalin-fixed and paraffin-embedded and compared with the routinely fixed resection specimen (sample C). The variation in immunohistochemical expression of Ki67, oestrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor 2 (HER2), p-Akt and p-Erk1/2 were investigated. RESULTS: Twenty-one tissue sets with adequate tumour were available. Median time between collection of core-cuts A and B was 30 minutes (range, 20 to 80 minutes). None of the markers showed significant differences between samples A and B. Similarly, Ki67, ER, PgR and HER2 did not differ significantly between core-cuts and main resection specimen, although there was a trend for lower resection values for ER (P = 0.06). However, p-Akt and p-Erk1/2 were markedly lower in resections than core-cuts (median, 27 versus 101 and 69 versus 193, respectively; both P < 0.0001 [two-sided]). This difference was significantly greater in mastectomy than in lumpectomy specimens for p-Erk1/2 (P = 0.01). CONCLUSIONS: The delay in fixation in core-cuts taken after postoperative X-ray of resection specimens has no significant impact on expression of Ki67, ER, PgR, HER2, p-Akt or p-Erk1/2. However, extreme loss of phospho-staining can occur during routine fixation of resection specimens. These differences are likely attributable to suboptimal fixation and may have major repercussions for clinical research involving these markers
Recommended from our members
Lesser prairie-chicken brood habitat in sand sagebrush: invertebrate biomass and vegetation
Invertebrates are an important food source for grouse chicks, especially within the first 2 weeks of life. Invertebrate abundance is highly patchy and dependent upon herbaceous cover and vegetation structure. We examined the relationship between invertebrate biomass (from sweepnet samples) and habitat structure at lesser prairie-chicken (Tympanuchus pallidicinctus) brood-use and non-use areas during 2001 and 2002 in a sand sagebrush (Artemisia filifolia) prairie vegetation community of southwestern Kansas. We delineated use and non-use areas from paired sampling points within and outside 95% utilization distributions of radiomarked brood females, respectively, during the first 60 days post-hatch. We measured vegetation cover and invertebrate biomass (Acrididae and "other" invertebrates) at 71 paired points on 2 study sites (Site 1=4 broods, Site 11 = 12 broods). Both Acrididae and other invertebrate biomasses were greater at brood areas than non-use areas on both study sites, suggesting this food source likely had a greater influence on brood habitat use than vegetation type. Vegetation structure described brood-use areas better than vegetation type because brood-use areas had greater visual obstruction readings (VORs) than non-use areas regardless of dominant cover type. We also examined the predictive relationship between vegetation type and invertebrate biomass. Sand sagebrush density was the best linear predictor of Acrididae biomass, with lower densities having the greatest Acrididae biomass. We propose experiments to determine best management practices that produce abundant invertebrate biomasses for lesser prairie-chicken brood habitat, using our study as a baseline.Keywords: invertebrate biomass,
habitat use,
sand sagebrush,
Acrididae,
Kansas,
Artemisia filifolia,
lesser prairie-chicken,
Tympanuchus pallidicinctu
ER and HER2 expression are positively correlated in HER2 non-overexpressing breast cancer
PMCID: PMC3446380This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Oxford SWIFT IFS and multi-wavelength observations of the Eagle galaxy at z=0.77
The `Eagle' galaxy at a redshift of 0.77 is studied with the Oxford Short
Wavelength Integral Field Spectrograph (SWIFT) and multi-wavelength data from
the All-wavelength Extended Groth strip International Survey (AEGIS). It was
chosen from AEGIS because of the bright and extended emission in its slit
spectrum. Three dimensional kinematic maps of the Eagle reveal a gradient in
velocity dispersion which spans 35-75 +/- 10 km/s and a rotation velocity of 25
+/- 5 km/s uncorrected for inclination. Hubble Space Telescope images suggest
it is close to face-on. In comparison with galaxies from AEGIS at similar
redshifts, the Eagle is extremely bright and blue in the rest-frame optical,
highly star-forming, dominated by unobscured star-formation, and has a low
metallicity for its size. This is consistent with its selection. The Eagle is
likely undergoing a major merger and is caught in the early stage of a
star-burst when it has not yet experienced metal enrichment or formed the mass
of dust typically found in star-forming galaxies.Comment: accepted for publication in MNRA
The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation
Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al
- …