192 research outputs found

    The study of models for zinc(II) metalloenzymes in aqueous solution

    Get PDF
    Model compounds have been of great importance in elucidating the mechanism of action of many metalloenzymes, particulary those containing the Zn(II) ion. Of particular importance has been the acidity of water molecules coordinated to Zn(II) in metalloenzymes. The coordination number (C.N.) of the zinc is lowered from the C.N. of 6 found for the aquo ion to, usually, 4 in these situations, which leads to greater acidity of the coordinated water molecule. This is essential for such metalloenzymes to function at biological pH. Of particular interest has been the pKa of the complexes of N2S type ligands, which resemble the coordination environment of peptide deformylase (PD). A major question is whether the presence of the strongly binding negative sulfur of the cysteine group would greatly lower the acidity of the coordinated water in the active site as compared with other metalloenzymes where, for example, three neutral nitrogen donors are coordinated. The model complex for PD, a N2S ligand (PATH) first studied by Goldberg, is studied to answer this question. Glass electrode potentiometry and differential pulse voltammetry are used to show that the acidity of the coordinated water is quite high, showing that the mercapto group of PATH, and also in PD, does not cause a decrease in acidity. The Zn complex of cyclen, as well as other nitrogen donor macrocycles, are studied by glass electrode potentiometry and differential pulse voltammetry to determine the acidity of coordinated water molecules, as well as the formation constants of small ligands with the Zn(II) complex. It is shown that the cyclen complex of Zn(II) has strong binding with ligands such as chloride, bromide, iodide and thiourea, indicating that the Zn center has become ‘softer’ in the HSAB classification of Pearson than is the case for the Zn(II) aquo ion. The acidity of a variety of Zn(II) complexes with nitrogen donor ligands is discussed in relation to factors that control such acidity

    Metaproteomics Reveal That Rapid Perturbations in Organic Matter Prioritize Functional Restructuring Over Taxonomy In Western Arctic Ocean Microbiomes

    Get PDF
    We examined metaproteome profiles from two Arctic microbiomes during 10-day shipboard incubations to directly track early functional and taxonomic responses to a simulated algal bloom and an oligotrophic control. Using a novel peptide-based enrichment analysis, significant changes (p-value \u3c 0.01) in biological and molecular functions associated with carbon and nitrogen recycling were observed. Within the first day under both organic matter conditions, Bering Strait surface microbiomes increased protein synthesis, carbohydrate degradation, and cellular redox processes while decreasing C1 metabolism. Taxonomic assignments revealed that the core microbiome collectively responded to algal substrates by assimilating carbon before select taxa utilize and metabolize nitrogen intracellularly. Incubations of Chukchi Sea bottom water microbiomes showed similar, but delayed functional responses to identical treatments. Although 24 functional terms were shared between experimental treatments, the timing, and degree of the remaining responses were highly variable, showing that organic matter perturbation directs community functionality prior to alterations to the taxonomic distribution at the microbiome class level. The dynamic responses of these two oceanic microbial communities have important implications for timing and magnitude of responses to organic perturbations within the Arctic Ocean and how community-level functions may forecast biogeochemical gradients in oceans

    GluN2B and GluN2D NMDARs dominate synaptic responses in the adult spinal cord

    Get PDF
    The composition of the postsynaptic ionotropic receptors that receive presynaptically released transmitter is critical not only for transducing and integrating electrical signals but also for coordinating downstream biochemical signaling pathways. At glutamatergic synapses in the adult CNS an overwhelming body of evidence indicates that the NMDA receptor (NMDAR) component of synaptic responses is dominated by NMDARs containing the GluN2A subunit, while NMDARs containing GluN2B, GluN2C, or GluN2D play minor roles in synaptic transmission. Here, we discovered NMDAR-mediated synaptic responses with characteristics not described elsewhere in the adult CNS. We found that GluN2A-containing receptors contribute little to synaptic NMDAR responses while GluN2B dominates at synapses of lamina I neurons in the adult spinal cord. In addition, we provide evidence for a GluN2D-mediated synaptic NMDAR component in adult lamina I neurons. Strikingly, the charge transfer mediated by GluN2D far exceeds that of GluN2A and is comparable to that of GluN2B. Lamina I forms a disti

    A Feasibility Study of Quantifying Longitudinal Brain Changes in Herpes Simplex Virus (HSV) Encephalitis Using Magnetic Resonance Imaging (MRI) and Stereology.

    Get PDF
    OBJECTIVES: To assess whether it is feasible to quantify acute change in temporal lobe volume and total oedema volumes in herpes simplex virus (HSV) encephalitis as a preliminary to a trial of corticosteroid therapy. METHODS: The study analysed serially acquired magnetic resonance images (MRI), of patients with acute HSV encephalitis who had neuroimaging repeated within four weeks of the first scan. We performed volumetric measurements of the left and right temporal lobes and of cerebral oedema visible on T2 weighted Fluid Attenuated Inversion Recovery (FLAIR) images using stereology in conjunction with point counting. RESULTS: Temporal lobe volumes increased on average by 1.6% (standard deviation (SD 11%) in five patients who had not received corticosteroid therapy and decreased in two patients who had received corticosteroids by 8.5%. FLAIR hyperintensity volumes increased by 9% in patients not receiving treatment with corticosteroids and decreased by 29% in the two patients that had received corticosteroids. CONCLUSIONS: This study has shown it is feasible to quantify acute change in temporal lobe and total oedema volumes in HSV encephalitis and suggests a potential resolution of swelling in response to corticosteroid therapy. These techniques could be used as part of a randomized control trial to investigate the efficacy of corticosteroids for treating HSV encephalitis in conjunction with assessing clinical outcomes and could be of potential value in helping to predict the clinical outcomes of patients with HSV encephalitis

    Characterization of the ethanol‐inducible alc gene‐expression system in Arabidopsis thaliana

    Get PDF
    Controlled expression of transgenes in plants is key to the characterization of gene function and the regulated manipulation of growth and development. The alc gene-expression system, derived from the filamentous fungus Aspergillus nidulans, has previously been used successfully in both tobacco and potato, and has potential for use in agriculture. Its value to fundamental research is largely dependent on its utility in Arabidopsis thaliana. We have undertaken a detailed function analysis of the alc regulon in A. thaliana. By linking the alcA promoter to β-glucuronidase (GUS), luciferase (LUC) and green fluorescent protein (GFP) genes, we demonstrate that alcR-mediated expression occurs throughout the plant in a highly responsive manner. Induction occurs within one hour and is dose-dependent, with negligible activity in the absence of the exogenous inducer for soil-grown plants. Direct application of ethanol or exposure of whole plants to ethanol vapour are equally effective means of induction. Maximal expression using soil-grown plants occurred after 5 days of induction. In the majority of transgenics, expression is tightly regulated and reversible. We describe optimal strategies for utilizing the alc system in A. thaliana

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    Ligand-Dependent Recruitment of the ErbB4 Signaling Complex into Neuronal Lipid Rafts

    Get PDF
    Neuregulin (NRG) regulates synapse formation and synaptic plasticity, but little is known about the regulation of NRG signaling at synapses. Here we show that the NRG receptor ErbB4 was localized in anatomically defined postsynaptic densities in the brain. In cultured cortical neurons, ErbB4 was recruited to the neuronal lipid raft fraction after stimulation by NRG. Along with ErbB4, adaptor proteins Grb2 and Shc were translocated to lipid rafts by NRG stimulation. In transfected human embryonic kidney 293 cells, the partitioning of ErbB4 into a detergent-insoluble fraction that includes lipid rafts was increased by PSD-95 (postsynaptic density-95), through interaction of the ErbB4 C terminus with the PDZ [PSD-95/Discs large/zona occludens-1] domains of PSD-95. Disruption of lipid rafts inhibited NRG-induced activation of Erk and prevented NRG-induced blockade of induction of long-term potentiation at hippocampal CA1 synapses. Thus, our results indicate that NRG stimulation causes translocation of ErbB4 into lipid rafts and that lipid rafts are necessary for signaling by ErbB4

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Effect of B7.1 Costimulation on T-Cell Based Immunity against TAP-Negative Cancer Can Be Facilitated by TAP1 Expression

    Get PDF
    Tumors deficient in expression of the transporter associated with antigen processing (TAP) usually fail to induce T-cell-mediated immunity and are resistant to T-cell lysis. However, we have found that introduction of the B7.1 gene into TAP-negative (TAP−) or TAP1-transfected (TAP1+) murine lung carcinoma CMT.64 cells can augment the capacity of the cells to induce a protective immune response against wild-type tumor cells. Differences in the strength of the protective immune responses were observed between TAP− and TAP1+ B7.1 expressing CMT.64 cells depending on the doses of γ-irradiated cell immunization. While mice immunized with either high or low dose of B7.1-expressing TAP1+ cells rejected TAP− tumors, only high dose immunization with B7.1-expressing TAP− cells resulted in tumor rejection. The induced protective immunity was T-cell dependent as demonstrated by dramatically reduced antitumor immunity in mice depleted of CD8 or CD4 cells. Augmentation of T-cell mediated immune response against TAP− tumor cells was also observed in a virally infected tumor cell system. When mice were immunized with a high dose of γ-irradiated CMT.64 cells infected with vaccinia viruses carrying B7.1 and/or TAP1 genes, we found that the cells co-expressing B7.1 and TAP1, but not those expressing B7.1 alone, induced protective immunity against CMT.64 cells. In addition, inoculation with live tumor cells transfected with several different gene(s) revealed that only B7.1- and TAP1-coexpressing tumor cells significantly decreased tumorigenicity. These results indicate that B7.1-provoked antitumor immunity against TAP− cancer is facilitated by TAP1-expression, and thus both genes should be considered for cancer therapy in the future
    corecore