14 research outputs found

    Tetrahydrobiopterin Role in human umbilical vein endothelial dysfunction in maternal supraphysiological hypercholesterolemia

    Get PDF
    Maternal physiological hypercholesterolemia (MPH) allows a proper foetal development; however, maternal supraphysiological hypercholesterolemia (MSPH) associates with foetal endothelial dysfunction and early development of atherosclerosis. MSPH courses with reduced endothelium-dependent dilation of the human umbilical vein due to reduced endothelial nitric oxide synthase activity compared with MPH. Whether MSPH modifies the availability of the nitric oxide synthase cofactor tetrahydrobiopterin is unknown. We investigated whether MSPH-associated lower umbilical vein vascular reactivity results from reduced bioavailability of tetrahydrobiopterin. Total cholestero

    Insulin therapy and fetoplacental vascular function in gestational diabetes mellitus

    No full text
    New Findings: What is the topic of this review? This review focuses on the effects of insulin therapy on fetoplacental vasculature in gestational diabetes mellitus and the potentiating effects of adenosine on this therapy. What advances does it highlight? This review highlights recent studies exploring a potential functional link between insulin receptors and their dependence on adenosine receptor activation (insulin-adenosine axis) to restore placental endothelial function in gestational diabetes mellitus. Gestational diabetes mellitus (GDM) is a disease that occurs during pregnancy and is associated with maternal and fetal hyperglycaemia. Women with GDM are treated via diet to control their glycaemia; however, a proportion of these patients do not achieve the recommended values of glycaemia and are subjected to insulin therapy until delivery. Even if a diet-treated GDM pregnancy leads to normal maternal and newborn glucose levels, fetoplacental vascular dysfunction remains evident. Thus, control of glycaemia via diet does not prevent GDM-associated fetoplacental vascular and metabolic alterations. We review the available information regarding insulin therapy in the context of its potential consequences for fetoplacental vascular function in GDM. We propose the possibility that insulin therapy to produce normoglycaemia in the mother and newborn may require additional therapeutic measures to restore the normal metabolic condition of the vascular network in GDM. A role for A and A adenosine receptors and insulin receptors A and B as well as a potential functional link in the cell signalling associated with the activation of these receptors is proposed. This possibility could be helpful for the planning of strategies, including adenosine receptor-improved insulin therapy, for the treatment of GDM patients, thereby promoting the wellbeing of the growing fetus, newborn and mother

    Insulin Therapy in Pregnancy Hypertensive Diseases and its Effect on the Offspring and Mother Later in Life

    No full text
    Pregnancy hypertensive disorders such as Preeclampsia (PE) are strongly correlated with insulin resistance, a condition in which the metabolic handling of D-glucose is deficient. In addition, the impact of preeclampsia is enhanced by other insulin-resistant disorders, including polycystic ovary syndrome and obesity. For this reason, there is a clear association between maternal insulin resistance, polycystic ovary syndrome, obesity and the development of PE. However, whether PE is a consequence or the cause of these disorders is still unclear. Insulin therapy is usually recommended to pregnant women with diabetes mellitus when dietary and lifestyle measures have failed. The advantage of insulin therapy for Gestational Diabetes Mellitus (GDM) patients with hypertension is still controversial; surprisingly, there are no studies in which insulin therapy has been used in patients with hypertension in pregnancy without or with an established GDM. This review is focused on the use of insulin therapy in hypertensive disorders in the pregnancy and its effect on offspring and mother later in life. PubMed and relevant medical databases have been screened for literature covering research in the field especially in the last 5-10 years

    Mechanisms of the effect of magnesium salts in preeclampsia

    No full text
    Preeclampsia is a heterogeneous pregnancy-specific syndrome associated with abnormal trophoblast invasion and endothelial dysfunction. Magnesium (Mg) level may be normal or decreased in women with preeclampsia. However, the use of Mg salts, such as Mg sulphate, are useful in reducing the pathophysiological consequences of preeclampsia with severe features and eclampsia. Although the mechanism of action of this Mg salt is not well understood, the available evidence suggests a beneficial effect of Mg for the mother and foetus. The mechanisms include a lower level of soluble fms-like tyrosine kinase 1 and endoglin, blockage of brain N-methyl-D-aspartate receptors, decreased inflammation mediators, activation of nitric oxide synthases, blockage of arginases, and reduced free radicals level. The maintenance of Mg homeostasis in pregnancy is crucial for an appropriate pregnancy progression. Oral Mg salts can be used for this purpose which could result in mitigating the deleterious consequences of this syndrome to the mother, foetus, and newborn

    Intracellular and extracellular pH dynamics in the human placenta from diabetes mellitus

    No full text
    The placenta is a vital organ whose function in diseases of pregnancy is altered, resulting in an abnormal supply of nutrients to the foetus. The lack of placental vasculature homeostasis regulation causes endothelial dysfunction and altered vascular reactivity. The proper distribution of acid- (protons (H)) and base-equivalents through the placenta is essential to achieve physiological homeostasis. Several membrane transport mechanisms that control H distribution between the extracellular and intracellular spaces are expressed in the human placenta vascular endothelium and syncytiotrophoblast, including sodium (Na)/H exchangers (NHEs). One member of the NHEs family is NHE isoform 1 (NHE1), whose activity results in an alkaline intracellular pH (high intracellular pH (pHi)) and an acidic extracellular pH (pHo). Increased NHE1 expression, maximal transport activity, and turnover are reported in human syncytiotrophoblasts and lymphocytes from patients with diabetes mellitus type I (DMT1), and a positive correlation between NHEs activity and plasma factors, such as that between thrombin and platelet factor 3, has been reported in diabetes mellitus type II (DMT2). However, gestational diabetes mellitus (GDM) could result in a higher sensitivity of the human placenta to acidic pHo. We summarized the findings on pHi and pHo modulation in the human placenta with an emphasis on pregnancies in which the mother diagnosed with diabetes mellitus. A potential role of NHEs, particularly NHE1, is proposed regarding placental dysfunction in DMT1, DMT2, and GDM

    Maternal Hypercholesterolemia in Pregnancy Associates With Umbilical Vein Endothelial Dysfunction Role of Endothelial Nitric Oxide Synthase and Arginase II

    No full text
    OBJECTIVE - : Human pregnancy that courses with maternal supraphysiological hypercholesterolemia (MSPH) correlates with atherosclerotic lesions in fetal arteries. It is known that hypercholesterolemia associates with endothelial dysfunction in adults, a phenomenon where nitric oxide (NO) and arginase are involved. However, nothing is reported on potential alterations in the fetoplacental endothelial function in MSPH. The aim of this study was to determine whether MSPH alters fetal vascular reactivity via endothelial arginase/urea and L-arginine transport/NO signaling pathways. APPROACH AND RESULTS - : Total cholestero
    corecore