2 research outputs found

    Rapid construction of a dendritic cell vaccine through physical perturbation and apoptotic malignant T cell loading

    Get PDF
    We have demonstrated that adherence and release of monocytes from a plastic surface drives their differentiation into immature dendritic cells (DC,) that can mature further during overnight incubation in the presence of apoptotic malignant T cells. Based on these results, we sought to develop a clinically, practical, rapid means for producing DC loaded with malignant cells. A leukapheresis harvest containing the clonal, leukemic expansion of malignant CD4(+ )T cells was obtained from the blood of patients with cutaneous T cell lymphoma (CTCL). CTCL cells were purified with a CD3-magnetic bead column where CD3 engagement rendered the malignant T cells apoptotic. The monocyte fraction was simultaneously activated by column passage, re-added to the apoptotic CTCL cells and co-cultured overnight. CTCL cell apoptosis, DC differentiation and apoptotic malignant T cell ingestion were measured by immunostaining. The results demonstrate that as monocytes passed through the column matrix, they became activated and differentiated into semi-mature DC expressing significantly increased levels of class II, CD83 and CD86 (markers associated with maturing DC) and reduced expression of the monocyte markers CD14 and CD36. Apoptotic malignant T cells were avidly engulfed by the phagocytic transitioning DC. The addition of supportive cytokines further enhanced the number of DC that contained apoptotic malignant T cells. Functional studies confirmed that column passaged DC increased class II expression as shown by significantly enhanced stimulation in mixed leukocyte culture compared to control monocytes. In addition, DC loaded with apoptotic CTCL cells stimulated an increase in the percentage and absolute number of CD8 T cells compared to co-cultivation with non-loaded DC. After CD8 T cells were stimulated by DC loaded with malignant cells, they mediated increased apoptosis of residual CTCL cells and TNF-α secretion indicating development of enhanced cytolytic function. We report a simple one-step procedure where maturing DC containing apoptotic malignant T cells can be prepared rapidly for potential use in vaccine immunotherapy. Ready access to both the DC and apoptotic cells provided by this system will allow extension to other malignancies through the addition of a variety of apoptotic tumor cells and maturation stimuli
    corecore