3 research outputs found

    HIGH PERFORMANCE COMPUTING AND PROCESS CONTROL OF ADDITIVE LAYER MANUFACTURING METHODS FOR POLYMER PRODUCT METAL TOOLS PRODUCTION

    Get PDF
    Purpose of the study: Additive layer manufacturing is basically different from the traditional formative manufacturing process where a complete structure can be constructed into designed shape from layer to layer manufacturing rather than other methods or casting, forming or other machining processes. Additive layer manufacturing is a highly versatile, flexible, and customizable. Methodology: In this paper, we discussed high-performance computing and process control of AM methods by using different parameters. The significant interest in making complex, innovative and robust products by using AM methods to great extent to deal with work is needed in AM challenges relevant to key enabling technologies namely different materials and metrology to achieve functionally and reproductive ways. Main Findings: In this paper, we discussed major processes that highly accurate and the key applications, challenges and recent developments of future additive Am processes. Applications of this study: Additive layer manufacturing methods to develop the most highly and controlled methods for producing a variety of complex shapes and structures. The significant role of AM layer technology is to make produce the most economical and highly effective methods. In this study, we compared different AM methods for achieving the most highly and controlled methods of AM technology. Novelty/Originality of this study: Today manufacturing trends are very highly impacted by technologies globalizations. Various manufactures are using layer manufacturing into their best practices so that they can be changes in the global economy and manufacturing

    SCIENTIFIC AND TECHNOLOGICAL CHALLENGES OF LAYER MANUFACTURING PROCESSES FOR POLYMER COMPONENTS PRODUCTION

    Get PDF
    Purpose of study: Additive manufacturing processes taking the basic information form computer-aided design (CAD) file to convert into the stereolithography (STL) data file. Today additive layer manufacturing processes are playing a very vital role in manufacturing parts with high rate of effectiveness and accuracy. CAD software is approximated to sliced containing information of each layer by layer that is printed. The main purpose of the study is to discuss the scientific and technological challenges of additive layer manufacturing processes for making polymer components production through various technological parameters and problem-solving techniques of layer manufacturing processes. Main findings: Additive layer manufacturing is simply another name for 3D printing or rapid prototyping. As 3D printing has evolved as a technology, it has moved beyond prototyping and into the manufacturing space, with small runs of finished components now being produced by 3D printing machines around the world. Additive layer manufacturing (ALM) is the opposite of subtractive manufacturing, in which material is removed to reach the desired shape Methodology Used:  The continuous and increasing growth of additive layer manufacturing processes to discuss with different experimental behavior through simulations and graphical representations. In ALM, 3D parts are built up in successive layers of material under computer control. In its early days, 3D printing was used mainly for rapid prototyping, but it is now frequently used to make finished parts the automotive and aerospace sectors, amongst many others. The originality of study: At the present time, the technologies of additive manufacturing are not just using for making models with the plastics but using polymer materials. It is possible to make finished products developed with high accuracy and save a lot of time and there is the possibility of testing more models
    corecore