29 research outputs found

    Recovery of heavy metals from spent etching waste solution of printed circuit board (PCB) manufacturing

    Get PDF
    The process of etching is the most crucial part of the work of manufacturing printed circuit boards (PCB). In the etching process by nitric acid, a spent etching waste solution of composition 250 g/L HNO3, 30-40 g/L Cu, 30-40 g/L Sn, 30-40 g/L Pb and 20-25 g/L Fe is produced. High metal concentrations in the spent etching waste solution make it a viable candidate for the recovery of metals. Recovery of metals from spent etching waste solution is a significant concern as the recent growth in production of printed circuit boards has generated a drastic increase of spent etching waste solution each year. This study concerns itself with the recovery of metals from spent etching waste. In this study a dilution was made in order to increase the pH of the solution as spent etching waste solution has high acidity, and the electrowinning method was performed to recover metals from the spent etching waste solution. Glassy carbon and platinum were used as cathode and anode in order to investigate the electrodeposition of metals and cyclic voltammetry investigation suggests that the deposition of metals on glassy carbon electrodes occurs at four different overpotentials mainly at -0.15 V, -0.35 V, -0.45 V and -0.75 V. Microscopy observation demonstrates that there is a deposition of metals by applying the potentials in a set of current-time transient study for a duration of 60 seconds and the metals recovered formed as aggregates

    Multiple use of waste catalysts with and without regeneration for waste polymer cracking

    Get PDF
    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidised bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C2–C7) remained fairly constant. For the first time, these results indicate that “waste” FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity

    Gasification of empty fruit bunch for hydrogen rich fuel gas production

    Get PDF
    A study on gasification of Empty Fruit Bunch (EFB), a waste of the palm oil industry is investigated. The composition and particle size distribution of feedstock are determined and the thermal degradation behaviour is analysed by a thermogravimetric analysis (TGA). Then 300 g h-1 fluidized bed bench scale gasification unit is used to investigate the effect of the operating parameters on biomass gasification namely reactor temperature in the range of 700-1000°C and feedstock particle size in the range of 0.3-1.0 mm. The main gas species generated, as identified by a Gas Chromatography (GC), are H2, CO, CO2 and CH4. With temperature increasing from 700 to 1000°C, the total gas yield is enhanced greatly and has reached the maximum value (~ 92 wt. %, on the raw biomass sample basis) at 1000°C with big portions of H2 (38.02 vol.%) and CO (36.36 vol.%). Feedstock particle size shows some influence on the H2, CO and CH4 yields. The feedstock particle size of 0.3 to 0.5 mm, is found to generate a higher H2 yield (33.12 vol.%) and higher LHV of gas product (17.19 MJ m-3)

    Photocatalytic Reduction of Aqueous Cr(VI) with CdS under Visible Light Irradiation: Effect of Particle Size

    Get PDF
    Stringent environmental standards have made the removal of Cr(VI) from water an important problem for environmental scientist and engineering. Heterogeneous photocatalysis using suspended photocatalyst is an interesting technique to consider for this application. In this work, the influence of particle size of suspended CdS on the photocatalytic reduction of aqueous Cr(VI) ion was investigated. The efficiency of Cr(VI) reduction was monitored through UV-visible analysis. The experimental results showed that the nanoparticle size has a dramatic effect on the adsorption and reduction of Cr(VI). As surface area increased from 44.2±0.6 to 98.7±0.5 m2/g due to particle size reduction, the rate of Cr(VI) reduction nearly doubled in the first 20 min of visible light irradiation. The results evidenced the inverse relationship between the apparent reduction rate constant and the CdS particle size. Conversely, the half-life (t1/2) period of the photocatalytic reduction has a direct relationship with CdS particle sizes.

    Dehydrogenation of Cyclohexanol to Cyclohexanone Over Nitrogen-doped Graphene supported Cu catalyst

    Get PDF
    In this study, the dehydrogenation of cyclohexanol to cyclohexanone over nitrogen-doped reduced graphene oxide (N-rGO) Cu catalyst has been reported. The N-rGO support was synthesized by chemical reduction of graphite oxide (GO). The synthesized N-rGO was used as a support to prepare the Cu/N-rGO catalyst via an incipient wet impregnation method. The as-prepared support and the Cu/N-rGO catalyst were characterized by FESEM, EDX, XRD, TEM, TGA, and Raman spectroscopy. The various characterization analysis revealed the suitability of the Cu/N-rGO as a heterogeneous catalyst that can be employed for the dehydrogenation of cyclohexanol to cyclohexanone. The catalytic activity of the Cu/N-rGO catalyst was tested in non-oxidative dehydrogenation of cyclohexanol to cyclohexanone using a stainless-steel fixed bed reactor. The effects of temperature, reactant flow rate, and time-on-stream on the activity of the Cu/N-rGO catalyst were examined. The Cu/N-rGO nanosheets show excellent catalytic activity and selectivity to cyclohexanone. The formation of stable Cu nanoparticles on N-rGO support interaction and segregation of Cu were crucial factors for the catalytic activity. The highest cyclohexanol conversion and selectivity of 93.3% and 82.7%, respectively, were obtained at a reaction temperature of 270 °C and cyclohexanol feed rate of 0.1 ml/min. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Synthesis of CdS Sensitized TiO 2

    Get PDF
    A series of CdS/TiO2 nanocomposites with different Cd to Ti molar ratio were synthesized from P25-TiO2 nanopowder using microwave-assisted hydrothermal method. The as-produced powders were characterized by XRD, electron microscopy, EDX, and UV-Vis diffuse reflectance spectroscopy. The adsorption capacity and photocatalytic activity of the samples were investigated using methylene blue as a model pollutant. Sorption tests revealed that the adsorption of MB onto the samples obeys the Freundlich-Langmuir isotherm model. The sorption capacity decreased as follows: TiO2>TCd2>TCd1>TCd3>TCd4. The results of the photocatalytic tests under high-intensity discharge (HID) lamp revealed that CdS/TiO2 powders with low Cd to Ti molar ratios exhibited much higher activities than P25-TiO2. The CdS/TiO2 sample with 20% CdS/(TCd2) showed the most activity among all these samples. The results also show that the Cd to Ti molar ratio of the nanocomposite has a significant effect on the photodegradation of MB and the enhanced activities exhibited by the nanocomposites are because of the low rate of electron-hole recombination

    Microwave-Assisted Synthesis of Porous ZnO/SnS 2

    Get PDF
    Porous ZnO/SnS2 nanocomposites with adjustable SnS2 contents were prepared via microwave-assisted heating of different aqueous solutions of SnS2 precursors in the presence of fixed amount of ZnCO3 nanoparticles at pH 7. The structures, compositions, BET specific surface areas, and optical properties of the as-prepared products were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, N2 adsorption, and UV-Vis absorption spectra. Photocatalytic activities of the samples were tested by the removal of aqueous ciprofloxacin, CrVI, and methylene blue under visible-light (λ>420 nm) irradiation. The experimental results reveal that the as-prepared heterogeneous nanostructures exhibit much higher visible-light-driven photocatalytic activity for the degradation of the pollutants than pure SnS2 nanocrystals. The photocatalytic degradation rates Ct/C0 of the pollutants for the most active heterogeneous nanostructure are about 10, 49, and 9 times higher than that of pure SnS2. The enhanced photocatalytic activities exhibited by the heterojunctions could be ascribed to the synergetic effect of enhanced absorption in the visible region and the reduced rate of charge carrier recombination because of efficient separation and electron transfer from the SnS2 to ZnO nanoparticles

    Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor

    Get PDF
    A study on gasification of empty fruit bunch (EFB), a waste of the palm oil industry, was investigated. The composition and particle size distribution of feedstock were determined and the thermal degradation behaviour was analysed by a thermogravimetric analysis (TGA). Then fluidized bed bench scale gasification unit was used to investigate the effect of the operating parameters on EFB air gasification namely reactor temperature in the range of 700–1000 °C, feedstock particle size in the range of 0.3–1.0 mm and equivalence ratio (ER) in the range of 0.15–0.35. The main gas species generated, as identified by a gas chromatography (GC), were H2, CO, CO2 and CH4. With temperature increasing from 700 °C to 1000 °C, the total gas yield was enhanced greatly and reached the maximum value (∼92 wt.%, on the raw biomass sample basis) at 1000 °C with big portions of H2 (38.02 vol.%) and CO (36.36 vol.%). Feedstock particle size showed an influence on the upgrading of H2, CO and CH4 yields. The feedstock particle size of 0.3–0.5 mm, was found to obtain a higher H2 yield (33.93 vol.%), and higher LHV of gas product (15.26 MJ/m3). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H2 yield (27.31 vol.%) at 850 °C. Due to the low efficiency of bench scale gasification unit the system needs to be scaling-up. The cost analysis for scale-up EFB gasification unit showed that the hydrogen supply cost is RM 6.70/kg EFB (2.11/kg=2.11/kg = 0.18/Nm3)

    Single-step catalytic deoxygenation-cracking of tung oil to bio-jet fuel over CoW/silica-alumina catalysts

    Get PDF
    Bifunctional Co-W catalysts with variable Co-W dosages on silica-alumina (SA) were prepared and tested for the catalytic deoxygenation-cracking of tung oil (TO) for the production of jet fuel (n-(C10-C16)) fractions. The CoW/SA catalyst appeared to be most active (hydrocarbon yield = 69%, jet fuel selectivity = 60%) and outperformed the monometallic Co and W analogues. Based on the effect of metal dosage, Co– and W-rich catalysts do not provide a workable approach in enhancing deoxygenation-cracking of the TO for jet fuel production, and overly cracking can be successfully controlled at lower metal dosages (5 wt% Co, 10 wt% W). The CoW/SA reusability study showed a consistent deoxygenation-cracking ability for four runs with hydrocarbon yields within the range of 77–84% and 64–77% jet fuel selectivity. GCMS analysis and physicochemical properties of TO oil fuel (TO-gasoline, TO-jet, TO diesel) confirmed that rich aromatic species in TO-diesel negatively affected the quality of the fuels. TO-fuels with a short chain had better combustion properties than those with a longer chain hydrocarbon. The TO-jet qualities are complied with standard Jet A-1 in accordance to ASTM D1655 and DEF STAN 91–91 specification standards. The TO-jet also exhibited excellent cold properties and superior combustion characteristic than Jet A-1

    Waste catalysts for waste polymer

    Get PDF
    Catalytic cracking of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 C. Two fresh and two steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as two used FCC catalysts (E-Cats) with different levels of metal poisoning. Also, inert microspheres (MS3) were used as a fluidizing agent to compare with thermal cracking process at BP pilot plant at Grangemouth, Scotland, which used sand as its fluidizing agent. The results of HDPE degradation in terms of yield of volatile hydrocarbon product are fresh FCC catalysts steamed FCC catalysts used FCC catalysts. The thermal cracking process using MS3 showed that at 450 C, the product distribution gave 46 wt% wax, 14% hydrocarbon gases, 8% gasoline, 0.1% coke and 32% nonvolatile product. In general, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste
    corecore