179 research outputs found

    Fully Employing Software Inspections Data

    Get PDF
    Software inspections provide a proven approach to quality assurance for software products of all kinds, including requirements, design, code, test plans, among others. Common to all inspections is the aim of finding and fixing defects as early as possible, and thereby providing cost savings by minimizing the amount of rework necessary later in the lifecycle. Measurement data, such as the number and type of found defects and the effort spent by the inspection team, provide not only direct feedback about the software product to the project team but are also valuable for process improvement activities. In this paper, we discuss NASA's use of software inspections and the rich set of data that has resulted. In particular, we present results from analysis of inspection data that illustrate the benefits of fully utilizing that data for process improvement at several levels. Examining such data across multiple inspections or projects allows team members to monitor and trigger cross project improvements. Such improvements may focus on the software development processes of the whole organization as well as improvements to the applied inspection process itself

    Research insights in Goss’s wilt and leaf blight

    Get PDF
    Goss’s wilt and leaf blight is caused by the bacterium Clavibacter michiganensis subsp. nebraskensis (Cmn). The disease was first reported in Nebraska in 1969 and soon after in the surrounding states including Iowa. Corn breeders identified resistance to the bacterium and by the 1980s the disease was no longer a threat to corn production except in eastern Nebraska. In 2008, Goss’s leaf blight was reported in eight counties in Iowa. In 2011, the disease was widespread throughout the state and up to 50 percent yield losses occurred in some fields

    High-Content Imaging to Phenotype Antimicrobial Effects on Individual Bacteria at Scale.

    Get PDF
    High-content imaging (HCI) is a technique for screening multiple cells in high resolution to detect subtle morphological and phenotypic variation. The method has been commonly deployed on model eukaryotic cellular systems, often for screening new drugs and targets. HCI is not commonly utilized for studying bacterial populations but may be a powerful tool in understanding and combatting antimicrobial resistance. Consequently, we developed a high-throughput method for phenotyping bacteria under antimicrobial exposure at the scale of individual bacterial cells. Imaging conditions were optimized on an Opera Phenix confocal microscope (Perkin Elmer), and novel analysis pipelines were established for both Gram-negative bacilli and Gram-positive cocci. The potential of this approach was illustrated using isolates of Klebsiella pneumoniae, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus HCI enabled the detection and assessment of subtle morphological characteristics, undetectable through conventional phenotypical methods, that could reproducibly distinguish between bacteria exposed to different classes of antimicrobials with distinct modes of action (MOAs). In addition, distinctive responses were observed between susceptible and resistant isolates. By phenotyping single bacterial cells, we observed intrapopulation differences, which may be critical in identifying persistence or emerging resistance during antimicrobial treatment. The work presented here outlines a comprehensive method for investigating morphological changes at scale in bacterial populations under specific perturbation.IMPORTANCE High-content imaging (HCI) is a microscopy technique that permits the screening of multiple cells simultaneously in high resolution to detect subtle morphological and phenotypic variation. The power of this methodology is that it can generate large data sets comprised of multiple parameters taken from individual cells subjected to a range of different conditions. We aimed to develop novel methods for using HCI to study bacterial cells exposed to a range of different antibiotic classes. Using an Opera Phenix confocal microscope (Perkin Elmer) and novel analysis pipelines, we created a method to study the morphological characteristics of Klebsiella pneumoniae, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus when exposed to antibacterial drugs with differing modes of action. By imaging individual bacterial cells at high resolution and scale, we observed intrapopulation differences associated with different antibiotics. The outlined methods are highly relevant for how we begin to better understand and combat antimicrobial resistance

    Development of caecaloids to study host-pathogen interactions: new insights into immunoregulatory functions of Trichuris muris extracellular vesicles in the caecum.

    Get PDF
    The caecum, an intestinal appendage in the junction of the small and large intestines, displays a unique epithelium that serves as an exclusive niche for a range of pathogens including whipworms (Trichuris spp.). While protocols to grow organoids from small intestine (enteroids) and colon (colonoids) exist, the conditions to culture organoids from the caecum have yet to be described. Here, we report methods to grow, differentiate and characterise mouse adult stem cell-derived caecal organoids, termed caecaloids. We compare the cellular composition of caecaloids with that of enteroids, identifying differences in intestinal epithelial cell populations that mimic those found in the caecum and small intestine. The remarkable similarity in the intestinal epithelial cell composition and spatial conformation of caecaloids and their tissue of origin enables their use as an in vitro model to study host interactions with important caecal pathogens. Thus, exploiting this system, we investigated the responses of caecal intestinal epithelial cells to extracellular vesicles secreted/excreted by the intracellular helminth Trichuris muris. Our findings reveal novel immunoregulatory effects of whipworm extracellular vesicles on the caecal epithelium, including the downregulation of responses to nucleic acid recognition and type-I interferon signalling

    Making Use of a Decade of Widely Varying Historical Data: SARP Project - "Full Life-Cycle Defect Management"

    Get PDF
    A viewgraph presentation describing the NASA Software Assurance Research Program (SARP) project, with a focus on full life-cycle defect management, is provided. The topics include: defect classification, data set and algorithm mapping, inspection guidelines, and tool support

    Validation of rice genome sequence by optical mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rice feeds much of the world, and possesses the simplest genome analyzed to date within the grass family, making it an economically relevant model system for other cereal crops. Although the rice genome is sequenced, validation and gap closing efforts require purely independent means for accurate finishing of sequence build data.</p> <p>Results</p> <p>To facilitate ongoing sequencing finishing and validation efforts, we have constructed a whole-genome SwaI optical restriction map of the rice genome. The physical map consists of 14 contigs, covering 12 chromosomes, with a total genome size of 382.17 Mb; this value is about 11% smaller than original estimates. 9 of the 14 optical map contigs are without gaps, covering chromosomes 1, 2, 3, 4, 5, 7, 8 10, and 12 in their entirety – including centromeres and telomeres. Alignments between optical and <it>in silico </it>restriction maps constructed from IRGSP (International Rice Genome Sequencing Project) and TIGR (The Institute for Genomic Research) genome sequence sources are comprehensive and informative, evidenced by map coverage across virtually all published gaps, discovery of new ones, and characterization of sequence misassemblies; all totalling ~14 Mb. Furthermore, since optical maps are ordered restriction maps, identified discordances are pinpointed on a reliable physical scaffold providing an independent resource for closure of gaps and rectification of misassemblies.</p> <p>Conclusion</p> <p>Analysis of sequence and optical mapping data effectively validates genome sequence assemblies constructed from large, repeat-rich genomes. Given this conclusion we envision new applications of such single molecule analysis that will merge advantages offered by high-resolution optical maps with inexpensive, but short sequence reads generated by emerging sequencing platforms. Lastly, map construction techniques presented here points the way to new types of comparative genome analysis that would focus on discernment of structural differences revealed by optical maps constructed from a broad range of rice subspecies and varieties.</p

    Interleukin-22 promotes phagolysosomal fusion to induce protection against Salmonella enterica Typhimurium in human epithelial cells.

    Get PDF
    Intestinal epithelial cells (IECs) play a key role in regulating immune responses and controlling infection. However, the direct role of IECs in restricting pathogens remains incompletely understood. Here, we provide evidence that IL-22 primed intestinal organoids derived from healthy human induced pluripotent stem cells (hIPSCs) to restrict Salmonella enterica serovar Typhimurium SL1344 infection. A combination of transcriptomics, bacterial invasion assays, and imaging suggests that IL-22-induced antimicrobial activity is driven by increased phagolysosomal fusion in IL-22-pretreated cells. The antimicrobial phenotype was absent in hIPSCs derived from a patient harboring a homozygous mutation in the IL10RB gene that inactivates the IL-22 receptor but was restored by genetically complementing the IL10RB deficiency. This study highlights a mechanism through which the IL-22 pathway facilitates the human intestinal epithelium to control microbial infection

    Pragmatic cluster randomised cohort cross-over trial to determine the effectiveness of bridging from emergency to regular contraception:the Bridge-It study protocol

    Get PDF
    Introduction Oral emergency contraception (EC) can prevent unintended pregnancy but it is important to start a regular method of contraception. Women in the UK usually access EC from a pharmacy but then need a subsequent appointment with a general practitioner or a sexual and reproductive health (SRH) service to access regular contraception. Unintended pregnancies can occur during this time. Methods and analysis Bridge-It is a pragmatic cluster randomised cohort cross-over trial designed to determine whether pharmacist provision of a bridging supply of a progestogen-only pill (POP) plus rapid access to a local SRH clinic, results in increased uptake of effective contraception and prevents more unintended pregnancies than provision of EC alone. Bridge-It involves 31 pharmacies in three UK regions (London, Lothian and Tayside) aiming to recruit 626–737 women. Pharmacies will give EC (levonorgestrel) according to normal practice and recruit women to both intervention and the control phases of the study. In the intervention phase, pharmacists will provide the POP (desogestrel) and offer rapid access to an SRH clinic. In the control phase, pharmacists will advise women to attend a contraceptive provider for contraception (standard care). Women will be asked 4 months later about contraceptive use. Data linkage to abortion registries will provide abortion rates over 12 months. The sample size is calculated on the primary outcome of effective contraception use at 4 months (yes/no) with 90% power and a 5% level of significance. Abortion rates will be an exploratory secondary analysis. Process evaluation includes interviews with pharmacists, SRH clinicians and women. Cost-effectiveness analysis will use a healthcare system perspective and be expressed as incremental cost-effectiveness ratio. Ethics and dissemination Ethical approval was received from South East Scotland REC June 2017. Results will be published in peer-reviewed journals and conference presentations. Trial registration number ISRCTN70616901
    corecore