38 research outputs found

    Systematic Multi-Epoch Monitoring of LkCa 15: Dynamic Dust Structures on Solar-System Scales

    Full text link
    We present the highest angular resolution infrared monitoring of LkCa 15, a young solar analog hosting a transition disk. This system has been the subject of a number of direct imaging studies from the millimeter through the optical, which have revealed multiple protoplanetary disk rings as well as three orbiting protoplanet candidates detected in infrared continuum (one of which was simultaneously seen at Hα\alpha). We use high-angular-resolution infrared imaging from 2014-2020 to systematically monitor these infrared signals and determine their physical origin. We find that three self-luminous protoplanets cannot explain the positional evolution of the infrared sources, since the longer time baseline images lack the coherent orbital motion that would be expected for companions. However, the data still strongly prefer a time-variable morphology that cannot be reproduced by static scattered-light disk models. The multi-epoch observations suggest the presence of complex and dynamic substructures moving through the forward-scattering side of the disk at ∼20\sim20 AU, or quickly-varying shadowing by closer-in material. We explore whether the previous Hα\alpha detection of one candidate would be inconsistent with this scenario, and in the process develop an analytical signal-to-noise penalty for Hα\alpha excesses detected near forward-scattered light. Under these new noise considerations, the Hα\alpha detection is not strongly inconsistent with forward scattering, making the dynamic LkCa 15 disk a natural explanation for both the infrared and Hα\alpha data.Comment: 24 pages, 11 figures, accepted for publication in Ap

    End-to-end Simulation of the SCALES Integral Field Spectrograph

    Full text link
    We present end-to-end simulations of SCALES, the third generation thermal-infrared diffraction limited imager and low/med-resolution integral field spectrograph (IFS) being designed for Keck. The 2-5 micron sensitivity of SCALES enables detection and characterization of a wide variety of exoplanets, including exoplanets detected through long-baseline astrometry, radial-velocity planets on wide orbits, accreting protoplanets in nearby star-forming regions, and reflected-light planets around the nearest stars. The simulation goal is to generate high-fidelity mock data to assess the scientific capabilities of the SCALES instrument at current and future design stages. The simulation processes arbitrary-resolution input intensity fields with a proposed observation pattern into an entire mock dataset of raw detector read-out lenslet-based IFS frames with calibrations and metadata, which are then reduced by the IFS data reduction pipeline to be analyzed by the user.Comment: 13 pages, 8 figures, Society of Photo-Optical Instrumentation Engineer

    Efficient detection and characterization of exoplanets within the diffraction limit: nulling with a mode-selective photonic lantern

    Full text link
    Coronagraphs allow for faint off-axis exoplanets to be observed, but are limited to angular separations greater than a few beam widths. Accessing closer-in separations would greatly increase the expected number of detectable planets, which scales inversely with the inner working angle. The Vortex Fiber Nuller (VFN) is an instrument concept designed to characterize exoplanets within a single beam-width. It requires few optical elements and is compatible with many coronagraph designs as a complementary characterization tool. However, the peak throughput for planet light is limited to about 20%, and the measurement places poor constraints on the planet location and flux ratio. We propose to augment the VFN design by replacing its single-mode fiber with a six-port mode-selective photonic lantern, retaining the original functionality while providing several additional ports that reject starlight but couple planet light. We show that the photonic lantern can also be used as a nuller without a vortex. We present monochromatic simulations characterizing the response of the Photonic Lantern Nuller (PLN) to astrophysical signals and wavefront errors, and show that combining exoplanet flux from the nulled ports significantly increases the overall throughput of the instrument. We show using synthetically generated data that the PLN detects exoplanets more effectively than the VFN. Furthermore, with the PLN, the exoplanet can be partially localized, and its flux ratio constrained. The PLN has the potential to be a powerful characterization tool complementary to traditional coronagraphs in future high-contrast instruments.Comment: 15 pages, 12 figure

    Imaging protoplanets: observing transition disks with non-redundant masking

    Get PDF
    Transition disks, protoplanetary disks with inner clearings, are promising objects in which to directly image forming planets. The high contrast imaging technique of non-redundant masking is well posed to detect planetary mass companions at several to tens of AU in nearby transition disks. We present non-redundant masking observations of the T Cha and LkCa 15 transition disks, both of which host posited sub-stellar mass companions. However, due to a loss of information intrinsic to the technique, observations of extended sources (e.g. scattered light from disks) can be misinterpreted as moving companions. We discuss tests to distinguish between these two scenarios, with applications to the T Cha and LkCa 15 observations. We argue that a static, forward-scattering disk can explain the T Cha data, while LkCa 15 is best explained by multiple orbiting companions.Comment: SPIE conference proceedin

    The Demographics and Atmospheres of Giant Planets with the ELTs

    Get PDF
    Gas giants are the most readily detectable exoplanets but fundamental questions about their system architectures, formation, migration, and atmospheres have been unanswerable with the current generation of ground- and space-based facilities. The dominant techniques to detect and characterize giant planets −- radial velocities, transits, direct imaging, microlensing, and astrometry −- are each isolated to a limited range of planet masses, separations, ages, and temperatures. These windows into the arrangement and physical properties of giant planets have spawned new questions about the timescale and location of their assembly; the distributions of planet mass and orbital separation at young and old ages; the composition and structure of their atmospheres; and their orbital and rotational angular momentum architectures. The ELTs will address these questions by building bridges between these islands of mass, orbital distance, and age. The angular resolution, collecting area, all-sky coverage, and novel instrumentation suite of these facilities are needed to provide a complete map of the orbits and atmospheric evolution of gas giant planets (0.3−-10 MJupM_\mathrm{Jup}) across space (0.1−-100 AU) and time (1 Myr to 10 Gyr). This white paper highlights the scientific potential of the GMT and TMT to address these outstanding questions, with a particular focus on the role of direct imaging and spectroscopy of large samples of giant planets that will soon be made available with GaiaGaia.Comment: White paper for the Astro2020 decadal surve

    Characterization of diamond-turned optics for SCALES

    Full text link
    High-contrast imaging has been used to discover and characterize dozens of exoplanets to date. The primary limiting performance factor for these instruments is contrast, the ratio of exoplanet to host star brightness that an instrument can successfully resolve. Contrast is largely determined by wavefront error, consisting of uncorrected atmospheric turbulence and optical aberrations downstream of AO correction. Single-point diamond turning allows for high-precision optics to be manufactured for use in astronomical instrumentation, presenting a cheaper and more versatile alternative to conventional glass polishing. This work presents measurements of wavefront error for diamond-turned aluminum optics in the Slicer Combined with an Array of Lenslets for Exoplanet Spectroscopy (SCALES) instrument, a 2-5 micron coronagraphic integral field spectrograph under construction for Keck Observatory. Wavefront error measurements for these optics are used to simulate SCALES' point spread function using physical optics propagation software poppy, showing that SCALES' contrast performance is not limited by wavefront error from internal instrument optics.Comment: Techniques and Instrumentation for Detection of Exoplanets X
    corecore