23 research outputs found
Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells
BACKGROUND: A full-term pregnancy has been associated with reduced risk for developing breast cancer. In rodent models, the protective effect of pregnancy can be mimicked with a defined regimen of estrogen and progesterone combination (E/P). However, the effects of pregnancy levels of E/P in humans and their underlying mechanisms are not fully understood. In this report, we investigated the growth inhibitory effects of pregnancy levels of E/P and both natural and synthetic retinoids in an immortalized human mammary epithelial cell line, 76N TERT cell line. RESULTS: We observed that cell growth was modestly inhibited by E/P, 9-cis-retinoic acid (9-cis RA) or all-trans-retinoic acid (ATRA), and strongly inhibited by N-(4-hydroxyphenyl) retinamide (HPR). The growth inhibitory effects of retinoids were further increased in the presence of E/P, suggesting their effects are additive. In addition, our results showed that both E/P and retinoid treatments resulted in increased RARE and p53 gene activity. We further demonstrated that p53 and p21 protein expression were induced following the E/P and retinoid treatments. Furthermore, we demonstrated that while the telomerase activity was moderately inhibited by E/P, 9-cis RA and ATRA, it was almost completely abolished by HPR treatment. These inhibitions on telomerase activity by retinoids were potentiated by co-treatment with E/P, and correlated well with their observed growth inhibitory effects. Finally, this study provides the first evidence that estrogen receptor beta is up-regulated in response to E/P and retinoid treatments. CONCLUSION: Taken together, our studies show that part of the anti-growth effects of E/P and retinoids is p53 dependent, and involve activation of p53 and subsequent induction of p21 expression. Inhibition of telomerase activity and up-regulation of estrogen receptor beta are also associated with the E/P- and retinoid-mediated growth inhibition. Our studies also demonstrate that the potency of retinoids on cell growth inhibition may be increased through combination of estrogen and progesterone treatment
Down-regulation of sfrp1 in a mammary epithelial cell line promotes the development of a cd44high/cd24low population which is invasive and resistant to anoikis
<p>Abstract</p> <p>Background</p> <p>The Wnt family of secreted proteins is implicated in the regulation of cell fate during development, as well as in cell proliferation, morphology, and migration. Aberrant activation of the Wnt/β-catenin signaling pathway leads to the development of several human cancers, including breast cancer. Secreted frizzled-related protein 1 (SFRP1) antagonizes this pathway by competing with the Frizzled receptor for Wnt ligands resulting in an attenuation of the signal transduction cascade. Loss of SFRP1 expression is observed in breast cancer, along with several other cancers, and is associated with poor patient prognosis. However, it is not clear whether the loss of SFRP1 expression predisposes the mammary gland to tumorigenesis.</p> <p>Results</p> <p>When SFRP1 is knocked down in a non-malignant immortalized mammary epithelial cell line (76 N TERT), nuclear levels of β-catenin rise and the Wnt pathway is stimulated. The SFRP1 knockdown cells exhibit increased expression of the pro-proliferative Cyclin D1 gene and increased cellular proliferation, undergo a partial epithelial-mesenchymal transition (EMT), are resistant to anchorage-independent cell death, exhibit increased migration, are significantly more invasive, and exhibit a CD24<sup>low</sup>/CD44<sup>high </sup>cell surface marker expression pattern.</p> <p>Conclusion</p> <p>Our study suggests that loss of SFRP1 allows non-malignant cells to acquire characteristics associated with breast cancer cells.</p
Normal breast tissue of obese women is enriched for macrophage markers and macrophage-associated gene expression
Activation of inflammatory pathways is one plausible mechanism underlying the association between obesity and increased breast cancer risk. However, macrophage infiltration and local biomarkers of inflammation in breast adipose tissue have seldom been studied in association with obesity
Parity-related molecular signatures and breast cancer subtypes by estrogen receptor status
INTRODUCTION: Relationships of parity with breast cancer risk are complex. Parity is associated with decreased risk of postmenopausal hormone receptor–positive breast tumors, but may increase risk for basal-like breast cancers and early-onset tumors. Characterizing parity-related gene expression patterns in normal breast and breast tumor tissues may improve understanding of the biological mechanisms underlying this complex pattern of risk. METHODS: We developed a parity signature by analyzing microRNA microarray data from 130 reduction mammoplasty (RM) patients (54 nulliparous and 76 parous). This parity signature, together with published parity signatures, was evaluated in gene expression data from 150 paired tumors and adjacent benign breast tissues from the Polish Breast Cancer Study, both overall and by tumor estrogen receptor (ER) status. RESULTS: We identified 251 genes significantly upregulated by parity status in RM patients (parous versus nulliparous; false discovery rate = 0.008), including genes in immune, inflammation and wound response pathways. This parity signature was significantly enriched in normal and tumor tissues of parous breast cancer patients, specifically in ER-positive tumors. CONCLUSIONS: Our data corroborate epidemiologic data, suggesting that the etiology and pathogenesis of breast cancers vary by ER status, which may have implications for developing prevention strategies for these tumors
Recommended from our members