3 research outputs found

    Effect of different plant bio-stimulants in improving cucumber growth under soilless culture

    Get PDF
    There are more studies about plant bio-stimulants but no clear results about which is the best one in improving vegetable crops specially cucumber. The aim of this study is  to screen the effect of various bio-stimulants in improving cucumber (Cucumis sativus L.) growth under soilless culture via root application by modifying coco-peat culture media substrate. In the present study, we tested fifteen treatments as follow: T1 -control (CK); T2 - 10 mM putrescine (Put); T3 - 250 ppm seaweed (Sea); T4 - 0.02 ppm meta-topolin (MT); T5 - 100 ppm naphthalene acetic acid (NAA); T6 - 400 ppm polyaspartic acid (PAS); T7 - 50 ppm sodium nitrophenolate (98% NIT); T8 - 100 ppm tryptophan (AAF); T9 - 1% fulvic acid (FUL); T10 - 107 CFU/ml Bacillus subtilis (BAS); T11 - 106 CFU/ml Trichoderma (TRI); T12 - 50 ppm alanine (ALa); T13 - 150 ppm salicylic acid (SA); T14 - 1 mM silicon (SiO2) and T15 - 0.001 ppm 24-epibrassinolide (EBR). The results obviously showed that using all bio-stimulants significantly increased cucumber growth parameters (plant height, stem diameter, leaves number, leaf area, shoot fresh weight, and root fresh weight). Seedlings Vigor Index (SVI) increased multifold compared with control by all treatments. The increase in cucumber seedlings vigor had a highly significant effect compared with control and the increase was 55.9% followed by 55.2% and 53.4% by Put, MT, and EBR treatments respectively. Our study concluded that the application of plant bio-stimulants can be used to modify coco-peat substrate with a positive effect on plant growth and improvement of cucumber plants under soilless culture. DOI: http://dx.doi.org/10.5281/zenodo.442027

    Effect of different plant bio-stimulants in improving cucumber growth under soilless culture

    Get PDF
    There are more studies about plant bio-stimulants but no clear results about which is the best one in improving vegetable crops specially cucumber. The aim of this study is  to screen the effect of various bio-stimulants in improving cucumber (Cucumis sativus L.) growth under soilless culture via root application by modifying coco-peat culture media substrate. In the present study, we tested fifteen treatments as follow: T1 -control (CK); T2 - 10 mM putrescine (Put); T3 - 250 ppm seaweed (Sea); T4 - 0.02 ppm meta-topolin (MT); T5 - 100 ppm naphthalene acetic acid (NAA); T6 - 400 ppm polyaspartic acid (PAS); T7 - 50 ppm sodium nitrophenolate (98% NIT); T8 - 100 ppm tryptophan (AAF); T9 - 1% fulvic acid (FUL); T10 - 107 CFU/ml Bacillus subtilis (BAS); T11 - 106 CFU/ml Trichoderma (TRI); T12 - 50 ppm alanine (ALa); T13 - 150 ppm salicylic acid (SA); T14 - 1 mM silicon (SiO2) and T15 - 0.001 ppm 24-epibrassinolide (EBR). The results obviously showed that using all bio-stimulants significantly increased cucumber growth parameters (plant height, stem diameter, leaves number, leaf area, shoot fresh weight, and root fresh weight). Seedlings Vigor Index (SVI) increased multifold compared with control by all treatments. The increase in cucumber seedlings vigor had a highly significant effect compared with control and the increase was 55.9% followed by 55.2% and 53.4% by Put, MT, and EBR treatments respectively. Our study concluded that the application of plant bio-stimulants can be used to modify coco-peat substrate with a positive effect on plant growth and improvement of cucumber plants under soilless culture. DOI: http://dx.doi.org/10.5281/zenodo.442027

    Exogenous Application of Amino Acids Improves the Growth and Yield of Lettuce by Enhancing Photosynthetic Assimilation and Nutrient Availability

    No full text
    As natural plant growth stimulators, amino acids are widely used to improve the yield and quality of crops. Several studies have illustrated the effects of different amino acids on lettuce plant parts. However, the effects of applying single amino acids on root growth remain elusive. The objective of this study was to evaluate the effect of root application of L-methionine on the growth of lettuce. In this study, two successive experiments on butterhead lettuce were conducted under hydroponic conditions. Three amino acids, L-methionine (20 mg/L), L-glycine (210 mg/L), and L-tryptophan (220 mg/L), were applied separately. L-methionine significantly increased the growth performance by 23.60%, whereas growth using L-tryptophan and L-glycine decreased by 98.78% and 27.45%, respectively. Considering the results of the first experiment, a second experiment was established with different concentrations of L-methionine (2200 mg/L, 220 mg/L, 22 mg/L, 2.2 mg/L, 0.2 mg/L, and 0.02 mg/L). The plants were allowed to grow for four weeks. Leaf width, plant area, leaf area, chlorophyll contents, etc., were evaluated. The results show that plant growth significantly improved by applying L-methionine at the lowest concentrations of 0.2 mg/L and 0.02 mg/L, which can, therefore, improve hydroponic production of lettuce and, accordingly, human nutrition
    corecore