3 research outputs found

    A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities

    Get PDF
    We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties

    Controlled Assembly of Sb2S3 Nanoparticles on Silica/Polymer Nanotubes: Insights into the Nature of Hybrid Interfaces

    Get PDF
    Silica nanotubes can serve as high aspect ratio templates for the deposition of inorganic nanoparticles to form novel hybrids. However, the nature of the interfacial binding is still an unresolved challenge when considered at the atomic level. In this work, novel nanocomposites have been successfully fabricated by the controlled nucleation and assembly of Sb(2)S(3) nanoparticles on the surface of mercaptopropyl-functionalized silica/polymer hybrid nanotubes (HNTs). The Sb(2)S(3) nanoparticles were strongly attached to the HNTs surface by interactions between the pendent thiol groups and inorganic sulfur atoms. Detailed analysis of the geometric and electronic structure using first–principle density functional theory demonstrates charge transfer from the nanoparticles to the underlying HNTs at the Sb(2)S(3)/HNTs interfaces. Formation of a packed array of Sb(2)S(3) nanoparticles on the HNTs results in mixing of the electronic states of the components, and is mediated by the mercaptopropyl bridges between Sb(2)S(3) and the outer layer of the HNTs
    corecore