7 research outputs found

    Disjoining Pressure of an Electrolyte Film Confined between Semipermeable Membranes

    Full text link
    We consider an electrolyte solution confined by semipermeable membranes in contact with a salt-free solvent. Membranes are uncharged, but since small counter-ions leak-out into infinite salt-free reservoirs, we observe a distance-dependent membrane potential, which generates a repulsive electrostatic disjoining pressure. We obtain the distribution of the potential and of ions, and derive explicit formulas for the disjoining pressure, which are validated by computer simulations. We predict a strong short-range power-law repulsion, and a weaker long-range exponential decay. Our results also demonstrate that an interaction between membranes does strongly depend on the screening lengths, valency of an electrolyte solution, and an inter-membrane film thickness. Finally, our analysis can be directly extended to the study of more complex situations and some biological problems.Comment: 9 pages, 8 figure

    Electrostatic Interaction of Heterogeneously Charged Surfaces with Semipermeable Membranes

    Full text link
    In this paper we study the electrostatic interaction of a heterogeneously charged wall with a neutral semipermeable membrane. The wall consists of periodic stripes, where the charge density varies in one direction. The membrane is in a contact with a bulk reservoir of an electrolyte solution and separated from the wall by a thin film of salt-free liquid. One type of ions (small counterions) permeates into the gap and gives rise to a distance-dependent membrane potential, which translates into a repulsive electrostatic disjoining pressure due to an overlap of counterion clouds in the gap. To quantify it we use two complementary approaches. First, we propose a mean-field theory based on a linearized Poisson-Boltzmann equation and Fourier analysis. These calculations allow us to estimate the effect of a heterogeneous charge pattern at the wall on the induced heterogeneous membrane potential, and the value of the disjoining pressure as a function of the gap. Second, we perform Langevin dynamics simulations of the same system with explicit ions. The results of the two approaches are in good agreement with each other at low surface charge and small gap, but differ due to nonlinearity at the higher charge. These results demonstrate that a heterogeneity of the wall charge can lead to a huge reduction in the electrostatic repulsion, which could dramatically facilitate a self-assembly in complex synthetic and biological systems.Comment: 14 pages, 6 figure

    Star polymers as unit cells for coarse-graining cross-linked networks

    Full text link
    Reducing the complexity of cross-linked polymer networks by preserving their main macroscale properties, is key to understanding them, and a crucial issue is to relate individual properties of the polymer constituents to those of the reduced network. Here we study polymer networks in a good solvent, by considering star polymers as their unit elements, and first quantify the interaction between their centers of masses. We then reduce the complexity of a network by replacing sets of its bridged star polymers by equivalent effective soft particles with dense cores. Our coarse graining allows us to approximate complex polymer networks by much simpler ones, keeping their relevant mechanical properties, as illustrated in computer experiments on an isotropic compression.Comment: 5 pages, 8 figure
    corecore