869 research outputs found
Monolayered versus multilayered electroless NiP coatings: Impact of the plating approach on the microstructure, mechanical and corrosion properties of the coatings
Electroless nickel-phosphorous (NiP) coatings were produced on low carbon steel substrates for a total plating time of 3\u202fh. Different preparation modalities were pursued. Multilayered coatings were produced by stacking three layers of the same composition by successive electroless plating with rinsing steps in between. On the other hand, coatings termed \u2018monolayered\u2019 for the sake of comparison were deposited by one step electroless process, with and without undergoing bath replenishment of the electrolyte during plating. All the samples were subjected to thermal annealing at 400\u202f\ub0C for 1\u202fh under argon atmosphere.
The results show that the multilayer approach prevents crack propagation in the as-deposited coatings because the interfaces between layers block the advance of defects. Bath replenishment during monolayered coatings production creates pseudo-interfaces similar to those of the multilayered case but they are ineffective in terms of corrosion protection. Un-replenishment of the electrolyte promotes a change in the coating's microstructure from lamellar to columnar which severely worsens their performance. Upon annealing, the presence of interfaces, along with the recrystallization of the metallic matrix, promotes an upgrading of the corrosion performance of the multi-layered coatings. The corrosion products spread laterally at the interface where they stockpile. At a certain point, the accumulation of these by-products provokes the exfoliation of the outermost layer exposing the layer underneath to the corrosive media, thereby delaying the advancement of the corrosion attack. The results of this study highlight the importance of the plating approach selection, as well as the need for proper electrolyte maintenance during the production of high-performance electroless coatings
Role of the Structure of Graphene Oxide Sheets on the CO2 Adsorption Properties of Nanocomposites Based on Graphene Oxide and Polyaniline or Fe3O4-Nanoparticles
[EN]New nanocomposites based on graphene oxide with polyaniline
(PANI) or Fe3O4 nanoparticles (MG) were synthesized for CO2 capture.
To study the effect of graphene oxide structure on the CO2 retention
capacity, CO2/N2 selectivity, adsorbent regeneration, and adsorption kinetics,
two different graphene oxides were synthesized by oxidation of graphite
flakes (GO) and commercial carbon nanofibers (NSGO). CO2 adsorption
isotherms at 300 K were evaluated by gravimetric experiments. The results
described the CO2 adsorption as reversible physisorption mechanism, where
the CO2 adsorption capacity increases linearly with the micropore volume.
Results also demonstrate the good CO2/N2 selectivity, recyclability, and fast
adsorption kinetics of the materials tested. Differences concerning the
adsorption properties of nanocomposites are related to the chemical
composition and the size of graphene oxide sheets
Search for Branons at LEP
We search, in the context of extra-dimension scenarios, for the possible
existence of brane fluctuations, called branons. Events with a single photon or
a single Z-boson and missing energy and momentum collected with the L3 detector
in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are
analysed. No excess over the Standard Model expectations is found and a lower
limit at 95% confidence level of 103 GeV is derived for the mass of branons,
for a scenario with small brane tensions. Alternatively, under the assumption
of a light branon, brane tensions below 180 GeV are excluded
Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP
Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are
used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~
events. Spin correlations are favoured by data, and found to agree with the
Standard Model predictions. In addition, correlations between the W-boson decay
planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events.
Decay-plane correlations, consistent with zero and with the Standard Model
predictions, are measured
Search for Branons at LEP
We search, in the context of extra-dimension scenarios, for the possible
existence of brane fluctuations, called branons. Events with a single photon or
a single Z-boson and missing energy and momentum collected with the L3 detector
in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are
analysed. No excess over the Standard Model expectations is found and a lower
limit at 95% confidence level of 103 GeV is derived for the mass of branons,
for a scenario with small brane tensions. Alternatively, under the assumption
of a light branon, brane tensions below 180 GeV are excluded
Measurement of Exclusive rho^0 rho^0 Production in Two-Photon Collisions at High Q^2 at LEP
Exclusive rho rho production in two-photon collisions involving a single
highly virtual photon is studied with data collected at LEP at centre-of-mass
energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of
854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is
determined as a function of the photon virtuality, Q^2 and the two-photon
centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2
and 1.1GeV < Wgg < 3GeV
Ultrarelativistic sources in nonlinear electrodynamics
The fields of rapidly moving sources are studied within nonlinear
electrodynamics by boosting the fields of sources at rest. As a consequence of
the ultrarelativistic limit the delta-like electromagnetic shock waves are
found. The character of the field within the shock depends on the theory of
nonlinear electrodynamics considered. In particular, we obtain the field of an
ultrarelativistic charge in the Born-Infeld theory.Comment: 10 pages, 3 figure
Measurement of the Cross Section for Open-Beauty Production in Photon-Photon Collisions at LEP
The cross section for open-beauty production in photon-photon collisions is
measured using the whole high-energy and high-luminosity data sample collected
by the L3 detector at LEP. This corresponds to 627/pb of integrated luminosity
for electron-positron centre-of-mass energies from 189GeV to 209GeV. Events
containing b quarks are identified through their semi-leptonic decay into
electrons or muons. The e+e- -> e+e-b b~X cross section is measured within our
fiducial volume and then extrapolated to the full phase space. These results
are found to be in significant excess with respect to Monte Carlo predictions
and next-to-leading order QCD calculations
Formation of the in Two-Photon Collisions at LEP
The two-photon width of the meson has been
measured with the L3 detector at LEP. The is studied in the decay
modes , KK, KK,
KK, , , and
using an integrated luminosity of 140 pb at GeV and
of 52 pb at GeV. The result is
(BR) keV. The dependence of the cross section is studied for
GeV. It is found to be better described by a Vector Meson
Dominance model form factor with a J-pole than with a -pole. In addition,
a signal of events is observed at the mass. Upper limits
for the two-photon widths of the , , and are also
given
- …