686 research outputs found

    Belief propagation : an asymptotically optimal algorithm for the random assignment problem

    Get PDF
    The random assignment problem asks for the minimum-cost perfect matching in the complete n×nn\times n bipartite graph \Knn with i.i.d. edge weights, say uniform on [0,1][0,1]. In a remarkable work by Aldous (2001), the optimal cost was shown to converge to ζ(2)\zeta(2) as n→∞n\to\infty, as conjectured by M\'ezard and Parisi (1987) through the so-called cavity method. The latter also suggested a non-rigorous decentralized strategy for finding the optimum, which turned out to be an instance of the Belief Propagation (BP) heuristic discussed by Pearl (1987). In this paper we use the objective method to analyze the performance of BP as the size of the underlying graph becomes large. Specifically, we establish that the dynamic of BP on \Knn converges in distribution as n→∞n\to\infty to an appropriately defined dynamic on the Poisson Weighted Infinite Tree, and we then prove correlation decay for this limiting dynamic. As a consequence, we obtain that BP finds an asymptotically correct assignment in O(n2)O(n^2) time only. This contrasts with both the worst-case upper bound for convergence of BP derived by Bayati, Shah and Sharma (2005) and the best-known computational cost of Θ(n3)\Theta(n^3) achieved by Edmonds and Karp's algorithm (1972).Comment: Mathematics of Operations Research (2009

    Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall

    Full text link
    We consider the motion of a fluid-immersed negatively buoyant particle in the vicinity of a thin compressible elastic wall, a situation that arises in a variety of technological and natural settings. We use scaling arguments to establish different regimes of sliding, and complement these estimates using thin-film lubrication dynamics to determine an asymptotic theory for the sedimentation, sliding, and spinning motions of a cylinder. The resulting theory takes the form of three coupled nonlinear singular-differential equations. Numerical integration of the resulting equations confirms our scaling relations and further yields a range of unexpected behaviours. Despite the low-Reynolds feature of the flow, we demonstrate that the particle can spontaneously oscillate when sliding, can generate lift via a Magnus-like effect, can undergo a spin-induced reversal effect, and also shows an unusual sedimentation singularity. Our description also allows us to address a sedimentation-sliding transition that can lead to the particle coasting over very long distances, similar to certain geophysical phenomena. Finally, we show that a small modification of our theory allows to generalize the results to account for additional effects such as wall poroelasticity

    The densest subgraph problem in sparse random graphs

    Get PDF
    We determine the asymptotic behavior of the maximum subgraph density of large random graphs with a prescribed degree sequence. The result applies in particular to the Erd\H{o}s-R\'{e}nyi model, where it settles a conjecture of Hajek [IEEE Trans. Inform. Theory 36 (1990) 1398-1414]. Our proof consists in extending the notion of balanced loads from finite graphs to their local weak limits, using unimodularity. This is a new illustration of the objective method described by Aldous and Steele [In Probability on Discrete Structures (2004) 1-72 Springer].Comment: Published at http://dx.doi.org/10.1214/14-AAP1091 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore