24 research outputs found

    Response Modifiers: Tweaking the Immune Response Against Influenza A Virus

    Get PDF
    Despite causing pandemics and yearly epidemics that result in significant morbidity and mortality, our arsenal of options to treat influenza A virus (IAV) infections remains limited and is challenged by the virus itself. While vaccination is the preferred intervention strategy against influenza, its efficacy is reduced in the elderly and infants who are most susceptible to severe and/or fatal infections. In addition, antigenic variation of IAV complicates the production of efficacious vaccines. Similarly, effectiveness of currently used antiviral drugs is jeopardized by the development of resistance to these drugs. Like many viruses, IAV is reliant on host factors and signaling-pathways for its replication, which could potentially offer alternative options to treat infections. While host-factors have long been recognized as attractive therapeutic candidates against other viruses, only recently they have been targeted for development as IAV antivirals. Future strategies to combat IAV infections will most likely include approaches that alter host-virus interactions on the one hand or dampen harmful host immune responses on the other, with the use of biological response modifiers (BRMs). In principle, BRMs are biologically active agents including antibodies, small peptides, and/or other (small) molecules that can influence the immune response. BRMs are already being used in the clinic to treat malignancies and autoimmune diseases. Repurposing such agents would allow for accelerated use against severe and potentially fatal IAV infections. In this review, we will address the potential therapeutic use of different BRM classes to modulate the immune response induced after IAV infections

    Immunohistochemical Characterization of the Human Sublingual Mucosa

    Get PDF
    The sublingual locus has recently received great attention as a delivery site for various immunotherapies, including those that induce allergen-specific tolerance, and for vaccines that generate protective immunity. To further understand the immune functions of the human sublingual mucosa, we characterized the distribution of various immunocytes therein by immunohistochemistry. We identified professional antigen presenting cells (APCs), including Langerhans cells (LCs) and macrophages. CD1a+ and langerin+ LCs were further found to be distributed in the basal and supra-basal layers of the epithelium, and macrophages were identified in the lamina propria. HLA-DR+ cells were observed in both the epithelium and the lamina propria, which mirrors the tissue distribution of LCs and macrophages within these tissues. CD3+, CD4+, and CD8+ T cells were found to be distributed along the basal layer of the epithelium and also in the lamina propria. Although B cells, plasma cells, and Foxp3+ regulatory T cells (Tregs) were only occasionally observed in the human sublingual mucosa in the absence of inflammation, they did show enrichment at inflammatory sites. Hence, we have further elucidated the immune cell component distribution in human sublingual mucosa

    Signs of immunosenescence correlate with poor outcome of mRNA COVID-19 vaccination in older adults

    Get PDF
    Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is effective in preventing COVID-19 hospitalization and fatal outcome. However, several studies indicated that there is reduced vaccine effectiveness among older individuals, which is correlated with their general health status1,2. How and to what extent age-related immunological defects are responsible for the suboptimal vaccine responses observed in older individuals receiving SARS-CoV-2 messenger RNA vaccine, is unclear and not fully investigated1,3–5. In this observational study, we investigated adaptive immune responses in adults of various ages (22–99 years old) receiving 2 doses of the BNT162b2 mRNA vaccine. Vaccine-induced Spike-specific antibody, and T and memory B cell responses decreased with increasing age. These responses positively correlated with the percentages of peripheral naïve CD4+ and CD8+ T cells and negatively with CD8+ T cells expressing signs of immunosenescence. Older adults displayed a preferred T cell response to the S2 region of the Spike protein, which is relatively conserved and a target for cross-reactive T cells induced by human ‘common cold’ coronaviruses. Memory T cell responses to influenza virus were not affected by age-related changes, nor the SARS-CoV-2-specific response induced by infection. Collectively, we identified signs of immunosenescence correlating with the outcome of vaccination against a new viral antigen to which older adults are immunologically naïve. This knowledge is important for the management of COVID-19 infections in older adults

    Combined Prospective Seroconversion and PCR Data of Selected Cohorts Indicate a High Rate of Subclinical SARS-CoV-2 Infections—an Open Observational Study in Lower Saxony, Germany

    Get PDF
    Despite lockdown measures, intense symptom-based PCR, and antigen testing, the SARS-CoV-2 pandemic spread further. In this open observational study conducted in Lower Saxony, Germany, voluntary SARS-CoV-2 PCR tests were performed from April 2020 until June 2021, supported by serum antibody testing to prove whether PCR testing in subjects with none or few symptoms of COVID-19 is a suitable tool to manage the pandemic. In different mobile stations, 4,817 subjects from three different working fields participated in the PCR testing. Serum antibody screening using the SARS-CoV-2 ViraChip IgG (Viramed, Germany) and the Elecsys Anti-SARS-CoV-2 assay (Roche, Germany) was performed alongside virus neutralization testing. Subjects were questioned regarding comorbidities and COVID-19 symptoms. Fifty-one subjects with acute SARS-CoV-2 infection were detected of which 31 subjects did not show any symptoms possibly characteristic for COVID-19. An additional 37 subjects reported a previous SARS-CoV-2 infection (total prevalence 1.82%). Seroconversion was discovered in 58 subjects with known SARS-CoV-2 infection and in 58 subjects that never had a positive PCR test. The latter had a significantly lower Charlson Comorbidity Index, and one third of them were asymptomatic. In 50% of all seroconverted subjects, neutralizing serum antibodies (NAbs) were detectable in parallel to N/S1 (n = 16) or N/S1/S2 antigen specific antibodies (n = 40) against SARS-CoV-2. NAb titers decreased within 100 days after PCR-confirmed SARS-CoV-2 acute infection by at least 2.5-fold. A relatively high rate of subclinical SARS-CoV-2 infections may contribute to the spread of SARS-CoV-2, suggesting that in addition to other intervention strategies, systematic screening of asymptomatic persons by PCR testing may significantly enable better pandemic control

    Recombinant influenza A viruses as vaccine vectors

    No full text
    Introduction: Various viruses, including poxviruses, adenoviruses and vesicular stomatitis virus, have been considered as vaccine vectors for the delivery of antigens of interest in the development of vaccines against newly emerging pathogens. Areas covered: Here, we review results that have been obtained with influenza A viruses (IAV) as vaccine vectors. With the advent of reverse genetics technology, IAV-based recombinant vaccine candidates have been constructed that induce protective immunity to a variety of different pathogens of interest, including West Nile virus, Plasmodium falciparum and respiratory syncytial virus. The various cloning strategies to produce effective and attenuated, safe to use IAV-based viral vectors are discussed. Expert commentary: It was concluded that IAV-based vector system has several advantages and holds promise for further development

    Coligation of the hepatitis C virus receptor CD81 with CD28 primes naive T lymphocytes to acquire type 2 effector function.

    No full text
    Costimuli provide supplementary signals required by naive T cells to become fully activated upon Ag encounter. Tetraspanins are a large family of transmembrane proteins that can costimulate T cells when engaged in vitro. In this study, we describe for the first time that coligation of the tetraspanins CD81, CD82, or CD9 with the costimulatory molecule CD28 in vitro leads to proliferation of naive T cells. When activated through this pathway, both CD4+ and CD8+ naive T cells differentiate into type 2 effector cells, which produce IL-4, IL-5, IL-13, and IL-10, together with IL-2 and TNF-alpha, but little to no IFN-gamma. These effector cells descend from precursors that display early and strong production of IL-4, STAT6 phosphorylation, and up-regulation of the transcription factor GATA-3, suggesting a direct skewing toward Th2 differentiation without a Th0 intermediate. The hepatitis C virus envelope protein E2 is the only ligand known for CD81. Therefore, we propose that this new type of Ag-independent T cell activation may occur in hepatitis C virus-infected individuals, contributing to liver inflammation, impaired type 1 immune responses, and recurrent flares of type 2 immunity associated with chronic infection

    MERS-CoV‒Specific T-Cell Responses in Camels after Single MVA-MERS-S Vaccination

    No full text
    We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)‒specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV‒specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection

    Simultaneous Detection of NF1, SPRED1, LZTR1, and NF2 Gene Mutations by Targeted NGS in an Italian Cohort of Suspected NF1 Patients

    No full text
    Neurofibromatosis type 1 (NF1) displays overlapping phenotypes with other neurocutaneous diseases such as Legius Syndrome. Here, we present results obtained using a next generation sequencing (NGS) panel including NF1, NF2, SPRED1, SMARCB1, and LZTR1 genes on Ion Torrent. Together with NGS, the Multiplex Ligation-Dependent Probe Amplification Analysis (MLPA) method was performed to rule out large deletions/duplications in NF1 gene; we validated the MLPA/NGS approach using Sanger sequencing on DNA or RNA of both positive and negative samples. In our cohort, a pathogenic variant was found in 175 patients; the pathogenic variant was observed in NF1 gene in 168 cases. A SPRED1 pathogenic variant was also found in one child and in a one year old boy, both NF2 and LZTR1 pathogenic variants were observed; in addition, we identified five LZTR1 pathogenic variants in three children and two adults. Six NF1 pathogenic variants, that the NGS analysis failed to identify, were detected on RNA by Sanger. NGS allows the identification of novel mutations in five genes in the same sequencing run, permitting unambiguous recognition of disorders with overlapping phenotypes with NF1 and facilitating genetic counseling and a personalized follow-up
    corecore