118 research outputs found
Phase diagram of a probabilistic cellular automaton with three-site interactions
We study a (1+1) dimensional probabilistic cellular automaton that is closely
related to the Domany-Kinzel (DKCA), but in which the update of a given site
depends on the state of {\it three} sites at the previous time step. Thus,
compared with the DKCA, there is an additional parameter, , representing
the probability for a site to be active at time , given that its nearest
neighbors and itself were active at time . We study phase transitions and
critical behavior for the activity {\it and} for damage spreading, using one-
and two-site mean-field approximations, and simulations, for and
. We find evidence for a line of tricritical points in the () parameter space, obtained using a mean-field approximation at pair level.
To construct the phase diagram in simulations we employ the growth-exponent
method in an interface representation. For , the phase diagram is
similar to the DKCA, but the damage spreading transition exhibits a reentrant
phase. For , the growth-exponent method reproduces the two absorbing
states, first and second-order phase transitions, bicritical point, and damage
spreading transition recently identified by Bagnoli {\it et al.} [Phys. Rev.
E{\bf 63}, 046116 (2001)].Comment: 15 pages, 7 figures, submited to PR
Toward an internally consistent astronomical distance scale
Accurate astronomical distance determination is crucial for all fields in
astrophysics, from Galactic to cosmological scales. Despite, or perhaps because
of, significant efforts to determine accurate distances, using a wide range of
methods, tracers, and techniques, an internally consistent astronomical
distance framework has not yet been established. We review current efforts to
homogenize the Local Group's distance framework, with particular emphasis on
the potential of RR Lyrae stars as distance indicators, and attempt to extend
this in an internally consistent manner to cosmological distances. Calibration
based on Type Ia supernovae and distance determinations based on gravitational
lensing represent particularly promising approaches. We provide a positive
outlook to improvements to the status quo expected from future surveys,
missions, and facilities. Astronomical distance determination has clearly
reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press
(chapter 8 of a special collection resulting from the May 2016 ISSI-BJ
workshop on Astronomical Distance Determination in the Space Age
Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks
Background and purpose: Infarct volume is a valuable outcome measure in treatment trials of acute ischemic stroke and is strongly associated with functional outcome. Its manual volumetric assessment is, however, too demanding to be implemented in clinical practice. Objective: To assess the value of convolutional neural networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT images in a large population of patients with acute ischemic stroke. Materials and methods: We included CT images of 1026 patients from a large pooling of patients with acute ischemic stroke. A reference standard for the infarct segmentation was generated by manual delineation. We introduce three CNN models for the segmentati
Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications
BACKGROUND Limited information exists about the epidemiology and outcome of surgical patients at increased risk of postoperative pulmonary complications (PPCs), and how intraoperative ventilation was managed in these patients.
OBJECTIVES To determine the incidence of surgical patients at increased risk of PPCs, and to compare the intraoperative ventilation management and postoperative outcomes with patients at low risk of PPCs.
DESIGN This was a prospective international 1-week observational study using the âAssess Respiratory Risk in Surgical Patients in Catalonia risk scoreâ (ARISCAT score) for PPC for risk stratification.
PATIENTS AND SETTING Adult patients requiring intraoperative ventilation during general anaesthesia for surgery in 146 hospitals across 29 countries.
MAIN OUTCOME MEASURES The primary outcome was the incidence of patients at increased risk of PPCs based on the ARISCAT score. Secondary outcomes included intraoperative ventilatory management and clinical outcomes.
RESULTS A total of 9864 patients fulfilled the inclusion criteria. The incidence of patients at increased risk was 28.4%. The most frequently chosen tidal volume (VT) size was 500 ml, or 7 to 9 ml kg1 predicted body weight, slightly lower in patients at increased risk of PPCs. Levels of positive end-expiratory pressure (PEEP) were slightly higher in patients at increased risk of PPCs, with 14.3% receiving more than 5 cmH2O PEEP compared with 7.6% in patients at low risk of PPCs (P < 0.001). Patients with a predicted preoperative increased risk of PPCs developed PPCs more frequently: 19 versus 7%, relative risk (RR) 3.16 (95% confidence interval 2.76 to 3.61), P < 0.001) and had longer hospital stays. The only ventilatory factor associated with the occurrence of PPCs was the peak pressure.
CONCLUSION The incidence of patients with a predicted increased risk of PPCs is high. A large proportion of patients receive high VT and low PEEP levels. PPCs occur frequently in patients at increased risk, with worse clinical outcome
Detecção dos genes de Staphylococcus aureus, enterotoxinas e de resistência à meticilina em leite
Measurement of the cross section of high transverse momentum ZâbbĚ production in protonâproton collisions at âs = 8 TeV with the ATLAS detector
This Letter reports the observation of a high transverse momentum ZâbbĚ signal in protonâproton collisions at âs=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fbâš. The ZâbbĚ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be
ĎZâbbÂŻfid=2.02Âą0.20 (stat.) Âą0.25 (syst.)Âą0.06 (lumi.) pb=2.02Âą0.33 pb,
in good agreement with next-to-leading-order theoretical predictions
Operation and performance of the ATLAS semiconductor tracker
The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74¹0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations
- âŚ