5,132 research outputs found

    Surveillance on the light-front gauge fixing Lagrangians

    Full text link
    In this work we propose two Lagrange multipliers with distinct coefficients for the light-front gauge that leads to the complete (non-reduced) propagator. This is accomplished via (n⋅A)2+(∂⋅A)2(n\cdot A)^{2}+(\partial \cdot A)^{2} terms in the Lagrangian density. These lead to a well-defined and exact though Lorentz non invariant light front propagator.Comment: 7 pages. This is an improved version of hep-th/030406

    Quantum gauge boson propagators in the light front

    Full text link
    Gauge fields in the light front are traditionally addressed via the employment of an algebraic condition n⋅A=0n\cdot A=0 in the Lagrangian density, where AμA_{\mu} is the gauge field (Abelian or non-Abelian) and nμn^\mu is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n⋅A)(∂⋅A)=0(n\cdot A)(\partial \cdot A)=0 with n⋅A=0=∂⋅An\cdot A=0=\partial \cdot A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous non-local singularities of the type (k⋅n)−α(k\cdot n)^{-\alpha} where α=1,2\alpha=1,2. These singularities must be conveniently treated, and by convenient we mean not only matemathically well-defined but physically sound and meaningfull as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.Comment: 10 page
    • …
    corecore