68 research outputs found

    The missense mutation in Abcg5 gene in spontaneously hypertensive rats (SHR) segregates with phytosterolemia but not hypertension

    Get PDF
    BACKGROUND: Sitosterolemia is a recessively inherited disorder in humans that is associated with premature atherosclerotic disease. Mutations in ABCG5 or ABCG8, comprising the sitosterolemia locus, STSL, are now known to cause this disease. Three in-bred strains of rats, WKY, SHR and SHRSP, are known to be sitosterolemic, hypertensive and they carry a missense 'mutation' in a conserved residue of Abcg5, Gly583Cys. Since these rat strains are also know to carry mutations at other genetic loci and the extent of phytosterolemia is only moderate, it is important to verify that the mutations in Abcg5 are causative for phytosterolemia and whether they contribute to hypertension. METHODS: To investigate whether the missense change in Abcg5 is responsible for the sitosterolemia we performed a segregation analysis in 103 F2 rats from a SHR × SD cross. Additionally, we measured tail-cuff blood pressure and measured intestinal lipid transport to identify possible mechanisms whereby this mutation causes sitosterolemia. RESULTS: Segregation analysis showed that the inheritance of the Gly583Cys mutation Abcg5 segregated with elevated plant sterols and this pattern was recessive, proving that this genetic change is responsible for the sitosterolemia in these rat strains. Tail-cuff monitoring of blood pressure in conscious animals showed no significant differences between wild-type, heterozygous and homozygous mutant F2 rats, suggesting that this alteration may not be a significant determinant of hypertension in these rats on a chow diet. CONCLUSION: This study shows that the previously identified Gly583Cys change in Abcg5 in three hypertension-susceptible rats is responsible for the sitosterolemia, but may not be a major determinant of blood pressure in these rats

    Role of CYP27A in cholesterol and bile acid metabolism

    Get PDF
    The CYP27A gene encodes a mitochondrial cytochrome P450 enzyme, sterol 27-hydroxylase, that is expressed in many different tissues and plays an important role in cholesterol and bile acid metabolism. In humans, CYP27A deficiency leads to cerebrotendinous xanthomatosis. To gain insight into the roles of CYP27A in the regulation of cholesterol and bile acid metabolism, cyp27A gene knockout heterozygous, homozygous, and wild-type littermate mice were studied. In contrast to homozygotes, heterozygotes had increased body weight and were mildly hypercholesterolemic, with increased numbers of lipoprotein particles in the low density lipoprotein size range. Cyp7A expression was not increased in heterozygotes but was in homozygotes, suggesting that parts of the homozygous phenotype are secondary to increased cyp7A expression and activity. Homozygotes exhibited pronounced hepatomegaly and dysregulation in hepatic cholesterol, bile acid, and fatty acid metabolism. Hepatic cholesterol synthesis and synthesis of bile acid intermediates were increased; however, side chain cleavage was impaired, leading to decreased bile salt concentrations in gallbladder bile. Expression of Na-taurocholate cotransporting polypeptide, the major sinusoidal bile salt transporter, was increased, and that of bile salt export pump, the major canalicular bile salt transporter, was decreased. Gender played a modifying role in the homozygous response to cyp27A deficiency, with females being gen
    corecore