374 research outputs found

    Soil total phosphorus and nitrogen explain vegetation community composition in a northern forest ecosystem near a phosphate massif

    Get PDF
    The relationship of the community composition of forest vegetation and soil nutrients were studied near the Sokli phosphate ore deposit in northern Finland. Simultaneously, the effects of the dominant species and the age of trees, rock parent material and soil layer on these nutrients were examined. For this purpose, 16 study plots were established at different distances from the phosphate ore along four transects. Phosphate mining may take place in Sokli in the future, and the vegetation surveys and soil sampling conducted at the plots can be used as a baseline status for following the possible changes that the mining may cause in the surrounding ecosystem. The total phosphorus (P) and nitrogen (N) contents of the soil humus layer were positively related with species number and abundance of the understorey vegetation, and the correlation was slightly higher with P than N. This is interesting, as N usually has the most important growth-limiting role in boreal ecosystems. The spatial variation in the content of soil elements was high both between and within plots, emphasizing the heterogeneity of the soil. Dominant tree species and the soil layer were the most important environmental variables affecting soil nutrient content. High contents of P in the humus layer (maximum 2.60 g kg(-1)) were measured from the birch-dominated plots. As the P contents of birch leaves and leaf litter were also rather high (2.58 and 1.28 g kg(-1), respectively), this may imply that the leaf litter of birch forms an important source of P for the soil. The possible mining effects, together with climate change, can have an influence on the release of nutrients to plants, which may lead to alterations in the vegetation community composition in the study region.Peer reviewe

    Global warming will affect the maximum potential abundance of boreal plant species

    Get PDF
    Forecasting the impact of future global warming on biodiversity requires understanding how temperature limits the distribution of species. Here we rely on Liebig's Law of Minimum to estimate the effect of temperature on the maximum potential abundance that a species can attain at a certain location. We develop 95%‐quantile regressions to model the influence of effective temperature sum on the maximum potential abundance of 25 common understory plant species of Finland, along 868 nationwide plots sampled in 1985. Fifteen of these species showed a significant response to temperature sum that was consistent in temperature‐only models and in all‐predictors models, which also included cumulative precipitation, soil texture, soil fertility, tree species and stand maturity as predictors. For species with significant and consistent responses to temperature, we forecasted potential shifts in abundance for the period 2041–2070 under the IPCC A1B emission scenario using temperature‐only models. We predict major potential changes in abundance and average northward distribution shifts of 6–8 km yr−1. Our results emphasize inter‐specific differences in the impact of global warming on the understory layer of boreal forests. Species in all functional groups from dwarf shrubs, herbs and grasses to bryophytes and lichens showed significant responses to temperature, while temperature did not limit the abundance of 10 species. We discuss the interest of modelling the ‘maximum potential abundance’ to deal with the uncertainty in the predictions of realized abundances associated to the effect of environmental factors not accounted for and to dispersal limitations of species, among others. We believe this concept has a promising and unexplored potential to forecast the impact of specific drivers of global change under future scenarios.202

    Benthic-pelagic coupling and trophic relationships in northern Baltic Sea food webs

    Get PDF
    Understanding marine ecosystem structure and functioning is crucial in supporting sustainable management of natural resources and monitoring the health of marine ecosystems. The current study utilized stable isotope (SI) mixing models and trophic position models to examine energy flow, trophic relationships, and benthic-pelagic coupling between food web components. Roughly 1900 samples from different trophic levels in the food web, collected during 2001-2010 from four northern and central sub-basins of the Baltic Sea, were analyzed for SI ratios of carbon and nitrogen. Trophic structure of the food webs among the sub-basins was consistent, but there were differences between the proportions of energy in different trophic levels that had originated from the benthic habitat. Mysids and amphipods served as important links between the benthic and pelagic ecosystems. Much (35-65%) of their energy originated from the benthic zone but was transferred to higher trophic levels in the pelagic food web by consumption by herring (Clupea harengus). One percent to twenty-four percent of the energy consumption of apex seal predators (Halichoerus grypus and Pusa hispida) and predatory fish (Salmo salar) was derived from benthic zone. Diets of mysids and amphipods differed, although some overlap in their dietary niches was observed. The food web in the Gulf of Finland was more influenced by the benthic subsystem than food webs in the other sub-basins. The baseline levels of delta C-13 and delta N-15 differed between sub-basins of the Baltic Sea, indicating differences in the input of organic matter and nutrients to each sub-basin.peerReviewe

    Forest mosses sensitively indicate nitrogen deposition in boreal background areas

    Get PDF
    Mosses take up nitrogen (N) mainly from precipitation through their surfaces, which makes them competent bioindicators of N deposition. We found positive relationships between the total N concentration (mossN%) of common terrestrial moss species (feather mosses Pleurozium schreberi and Hylocomium splendens, and a group of Dicranum species) and different forms of N deposition in 11-16 coniferous forests with low N deposition load in Finland. The mosses were collected either inside (Dicranum group) or both inside and outside (feather mosses) the forests. Deposition was monitored in situ as bulk deposition (BD) and stand throughfall (TF) and detected for ammonium (NH4+-N), nitrate (NO3--N), dissolved organic N (DON), and total N (N-tot, kg ha(-1)yr(-1)). N-tot deposition was lower in TF than BD indicating that tree canopies absorbed N from deposition in N limited boreal stands. However, mossN % was higher inside than outside the forests. In regression equations, inorganic N in BD predicted best the mossN% in openings, while DON in TF explained most variation of mossN% in forests. An asymptotic form of mossN% vs. TF N-tot curves in forests and free NH4+-N accumulation in tissues in the southern plots suggested mosses were near the N saturation state already at the N-tot deposition level of 3-5 kg ha(-1) yr(-1). N leachate from ground litterfall apparently also contributed the N supply of mosses. Our study yielded new information on the sensitivity of boreal mosses to low N deposition and their response to different N forms in canopy TF entering moss layer. The equations predicting the N-tot deposition with mossN% showed a good fit both in forest sites and openings, especially in case of P. schreberi. However, the open site mossN% is a preferable predictor of N deposition in monitoring studies to minimize the effect of tree canopies and N leachate from litterfall on the estimates. (C) 2020 Elsevier Ltd. All rights reserved.Peer reviewe

    Veden imetyksen vaikutukset metsÀmaahan ja kasvillisuuteen sekÀ vajo- ja pohjaveden laatuun. VIVA-tutkimushankkeen loppuraportti.

    Get PDF
    Myynti ja tilaukset: HĂ€meenlinnan kaupungin vesilaitos, Suosaarentie 4, 13210 HĂ€meenlinna Puh. 03-621 2290, Fax 03-621 2758
    • 

    corecore