5,234 research outputs found
A signature of anisotropic bubble collisions
Our universe may have formed via bubble nucleation in an eternally-inflating
background. Furthermore, the background may have a compact dimension---the
modulus of which tunnels out of a metastable minimum during bubble
nucleation---which subsequently grows to become one of our three large spatial
dimensions. When in this scenario our bubble universe collides with other ones
like it, the collision geometry is constrained by the reduced symmetry of the
tunneling instanton. While the regions affected by such bubble collisions still
appear (to leading order) as disks in an observer's sky, the centers of these
disks all lie on a single great circle, providing a distinct signature of
anisotropic bubble nucleation.Comment: 10 pages, 5 figures; v2: crucial error corrected, conclusions revise
Experimental observation of two-dimensional fluctuation magnetization in the vicinity of T_c for low values of the magnetic field in deoxygenated YBa_2Cu_3O_{7-x}
We measured isofield magnetization curves as a function of temperature in two
single crystal of deoxygenated YBaCuO with T_c = 52 and 41.5 K. Isofield MvsT
were obtained for fields running from 0.05 to 4 kOe. The reversible region of
the magnetization curves was analyzed in terms of a scaling proposed by Prange,
but searching for the best exponent . The scaling analysis carried
out for each data sample set with =0.669, which corresponds to the
3D-xy exponent, did not produced a collapsing of curves when applied to MvsT
curves data obtained for the lowest fields. The resulting analysis for the Y123
crystal with T_c = 41.5 K, shows that lower field curves collapse over the
entire reversible region following the Prange's scaling with =1,
suggesting a two-dimensional behavior. It is shown that the same data obeying
the Prange's scaling with =1 for crystal with T_c = 41.5 K, as well
low field data for crystal with = 52 K, obey the known two-dimensional
scaling law obtained in the lowest-Landau-level approximation.Comment: 4 pages, 3 figure
Mean-Periodic Functions Associated with the Jacobi-Dunkl Operator on R
2000 Mathematics Subject Classification: 34K99, 44A15, 44A35, 42A75, 42A63Using a convolution structure on the real line associated with the Jacobi-Dunkl differential-difference operator Λα,β given by:
Λα,βf(x) = f'(x) + ((2α + 1) coth x + (2β + 1) tanh x) { ( f(x) − f(−x) ) / 2 }, α ≥ β ≥ −1/2
, we define mean-periodic functions associated with Λα,β. We characterize these functions as an expansion series intervening appropriate
elementary functions expressed in terms of the derivatives of the eigenfunction of Λα,β. Next, we deal with the Pompeiu type problem and convolution equations for this operator
A comparative study of high-field diamagnetic fluctuations in deoxygenated YBa2Cu3O(7-x) and polycrystalline (Bi-Pb)2Sr2Ca3O(10)
We studied three single crystals of YBa2Cu3O{7-x} with Tc= 62.5, 52, and 41
K, and a textured specimen of (Bi-Pb)2Sr2Ca2Cu3O10 with Tc=108 K, for H//c
axis. The reversible data were interpreted in terms of 2D lowest-Landau-level
fluctuation theory. The data were fit well by the 2D LLL expression for
magnetization obtained by Tesanovic etal., producing reasonable values of kappa
but larger values of dHc2/dT. Universality was studied by obtaining a
simultaneous scaling of Y123 data and Bi2223. An expression for the 2D x-axis
LLL scaling factor used to obtain the simultaneous scaling was extracted from
theory, and compared with the experimental values. The comparison between the
values of the x-axis produced a deviation of 40% which suggests that the
hypothesis of universality of the 2D-LLL fluctuations is not supported by the
studied samples. We finaly observe that Y123 magnetization data for
temperatures above obbey a universal scaling obtained for the diamagnetic
fluctuation magnetization from a theory considering non-local field effects.
The same scaling was not obbeyed by the corresponding magnetization calculated
from the two-dimensional lowest-Landau-level theory.Comment: 7 pages 5 figures, accept in Journ. Low Temp. Phy
- …