6,346 research outputs found
Moments of nonclassicality quasiprobabilities
A method is introduced for the verification of nonclassicality in terms of
moments of nonclassicality quasiprobability distributions. The latter are
easily obtained from experimental data and will be denoted as nonclassicality
moments. Their relation to normally-ordered moments is derived, which enables
us to verify nonclassicality by using well established criteria. Alternatively,
nonclassicality criteria are directly formulated in terms of nonclassicality
moments. The latter converge in proper limits to the usually used criteria, as
is illustrated for squeezing and sub-Poissonian photon statistics. Our theory
also yields expectation values of any observable in terms of nonclassicality
moments.Comment: 6 pages, 3 figure
Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection
We consider the problem of distinguishing, with minimum probability of error,
two optical beam-splitter channels with unequal complex-valued reflectivities
using general quantum probe states entangled over M signal and M' idler mode
pairs of which the signal modes are bounced off the beam splitter while the
idler modes are retained losslessly. We obtain a lower bound on the output
state fidelity valid for any pure input state. We define number-diagonal signal
(NDS) states to be input states whose density operator in the signal modes is
diagonal in the multimode number basis. For such input states, we derive series
formulas for the optimal error probability, the output state fidelity, and the
Chernoff-type upper bounds on the error probability. For the special cases of
quantum reading of a classical digital memory and target detection (for which
the reflectivities are real valued), we show that for a given input signal
photon probability distribution, the fidelity is minimized by the NDS states
with that distribution and that for a given average total signal energy N_s,
the fidelity is minimized by any multimode Fock state with N_s total signal
photons. For reading of an ideal memory, it is shown that Fock state inputs
minimize the Chernoff bound. For target detection under high-loss conditions, a
no-go result showing the lack of appreciable quantum advantage over coherent
state transmitters is derived. A comparison of the error probability
performance for quantum reading of number state and two-mode squeezed vacuum
state (or EPR state) transmitters relative to coherent state transmitters is
presented for various values of the reflectances. While the nonclassical states
in general perform better than the coherent state, the quantitative performance
gains differ depending on the values of the reflectances.Comment: 12 pages, 7 figures. This closely approximates the published version.
The major change from v2 is that Section IV has been re-organized, with a
no-go result for target detection under high loss conditions highlighted. The
last sentence of the abstract has been deleted to conform to the arXiv word
limit. Please see the PDF for the full abstrac
Effects of probiotics in patients with diabetes mellitus type 2 : study protocol for a randomized, double-blind, placebo-controlled trial
Background:
Low grade chronic inflammation is observed in patients with type 2 diabetes mellitus (T2DM). Endotoxin derived from gut bacteria may act as a potent inflammatory stimulant. Probiotics, which are believed to contain health promoting live microorganisms, may influence circulating endotoxin levels. Ingestion of live probiotic cultures may alter gut microbiota in a beneficial manner to reduce inflammation; no information is available whether or not they do so in patients with T2DM. Therefore, the aim of this study is to characterize the beneficial effects of probiotics on circulating endotoxin levels and other biomarkers related to systemic low-grade inflammation in patients with T2DM.
Methods:
One hundred and twenty consenting adult Saudi T2DM patients (naïve or newly diagnosed and without co-morbidities) will be enrolled in this clinical trial and randomized to receive daily placebo or probiotics (Ecologic®Barrier) for 26 weeks in a double-blind manner. Inflammatory and metabolic markers will be measured and fecal samples analyzed. Measurements/samples will be obtained at baseline and after 4, 8, 12/13 and 26 weeks of treatment.
Discussion:
It is expected that the probiotic product will induce beneficial changes in gut microbiota, reduce the systemic inflammatory state through altering systemic endotoxin levels and, as such, reduce the systemic inflammatory response observed in T2DM subjects.
Trial registration: ClinicalTrials.gov Identifier: NCT0176551
Adaptive Processing of Spatial-Keyword Data Over a Distributed Streaming Cluster
The widespread use of GPS-enabled smartphones along with the popularity of
micro-blogging and social networking applications, e.g., Twitter and Facebook,
has resulted in the generation of huge streams of geo-tagged textual data. Many
applications require real-time processing of these streams. For example,
location-based e-coupon and ad-targeting systems enable advertisers to register
millions of ads to millions of users. The number of users is typically very
high and they are continuously moving, and the ads change frequently as well.
Hence sending the right ad to the matching users is very challenging. Existing
streaming systems are either centralized or are not spatial-keyword aware, and
cannot efficiently support the processing of rapidly arriving spatial-keyword
data streams. This paper presents Tornado, a distributed spatial-keyword stream
processing system. Tornado features routing units to fairly distribute the
workload, and furthermore, co-locate the data objects and the corresponding
queries at the same processing units. The routing units use the Augmented-Grid,
a novel structure that is equipped with an efficient search algorithm for
distributing the data objects and queries. Tornado uses evaluators to process
the data objects against the queries. The routing units minimize the redundant
communication by not sending data updates for processing when these updates do
not match any query. By applying dynamically evaluated cost formulae that
continuously represent the processing overhead at each evaluator, Tornado is
adaptive to changes in the workload. Extensive experimental evaluation using
spatio-textual range queries over real Twitter data indicates that Tornado
outperforms the non-spatio-textually aware approaches by up to two orders of
magnitude in terms of the overall system throughput
IR optical fiber-based noncontact pyrometer for drop tube instrumentation
The design of a two color pyrometer with infrared optical fiber bundles for collection of the infrared radiation is described. The pyrometer design is engineered to facilitate its use for measurement of the temperature of small, falling samples in a microgravity materials processing experiment using a 100 meter long drop tube. Because the samples are small and move rapidly through the field of view of the pyrometer, the optical power budget of the detection system is severly limited. Strategies for overcoming this limitation are discussed
Ionization-induced asymmetric self-phase modulation and universal modulational instability in gas-filled hollow-core photonic crystal fibers
We study theoretically the propagation of relatively long pulses with
ionizing intensities in a hollow-core photonic crystal fiber filled with a
Raman-inactive gas. Due to photoionization, previously unknown types of
asymmetric self-phase modulation and `universal' modulational instabilities
existing in both normal and anomalous dispersion regions appear. We also show
that it is possible to spontaneously generate a plasma-induced continuum of
blueshifting solitons, opening up new possibilities for pushing supercontinuum
generation towards shorter and shorter wavelengths.Comment: 5 pages, 4 figure
Phylogenetic Relationships Amongst 10 Durio Species Based on Pcr-rflp Analysis of Two Chloroplast Genes
Twenty seven species of Durio have been identified in Sabah and Sarawak, Malaysia, but their relationships have not been studied. This study was conducted to analyse phylogenetic relationships amongst 10 Durio species in Malaysia using PCR-RFLP on two chloroplast DNA genes, i.e. ndhC-trnV and rbcL. DNAs were extracted from young leaves of 11 accessions from 10 Durio species collected from the Tenom Agriculture Research Station, Sabah, and University Agriculture Park, Universiti Putra Malaysia. Two pairs of oligonucleotide primers, N1-N2 and rbcL1-rbcL2, were used to flank the target regions ndhC-trnV and rbcL. Eight restriction enzymes, HindIII, BsuRI, PstI, TaqI, MspI, SmaI, BshNI, and EcoR130I, were used to digest the amplicons. Based on the results of PCR-RFLP on ndhC-trnV gene, the 10 Durio species were grouped into five distinct clusters, and the accessions generally showed high variations. However, based on the results of PCR-RFLP on the rbcL gene, the species were grouped into three distinct clusters, and generally showed low variations. This means that ndhC-trnV gene is more reliable for phylogenetic analysis in lower taxonomic level of Durio species or for diversity analysis, while rbcL gene is reliable marker for phylogenetic analysis at higher taxonomic level. PCR-RFLP on the ndhC-trnV and rbcL genes could therefore be considered as useful markers to phylogenetic analysis amongst Durio species. These finding might be used for further molecular marker assisted in Durio breeding program
Role of entanglement in two-photon imaging
The use of entangled photons in an imaging system can exhibit effects that
cannot be mimicked by any other two-photon source, whatever the strength of the
correlations between the two photons. We consider a two-photon imaging system
in which one photon is used to probe a remote (transmissive or scattering)
object, while the other serves as a reference. We discuss the role of
entanglement versus correlation in such a setting, and demonstrate that
entanglement is a prerequisite for achieving distributed quantum imaging.Comment: 15 pages, 2 figure
Combining Ability Analysis in Complete Diallel Cross of Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai)
The experiments were carried out in two research stations (MARDI Bukit Tangga, Kedah, and MARDI Seberang Perai, Penang) in Malaysia. The crossings were performed using the four inbred lines in complete diallel cross including selfs and reciprocals. We evaluated the yield components and fruit characters such as fruit yield per plant, vine length, days to fruit maturity, fruit weight, total soluble solid content, and rind thickness over a period of two planting seasons. General combining ability and its interaction with locations were statistically significant for all characteristics except number of fruits per plant across the environments. Results indicated that the additive genetic effects were important to the inheritance of these traits and the expression of additive genes was influenced greatly by environments. In addition, specific combining ability effect was statistically evident for fruit yield per plant, vine length, days to first female flower, and fruit weight. Most of the characters are simultaneously controlled by additive and nonadditive gene effects. This study demonstrated that the highest potential and promising among the crosses was cross P2 (BL-14) × P3 (6372-4), which possessed prolific plants, with early maturity, medium fruit weight and high soluble solid contents. Therefore this hybrid might be utilized for developing high yielding watermelon cultivars and may be recommended for commercial cultivation
Demonstration of the Complementarity of One- and Two-Photon Interference
The visibilities of second-order (single-photon) and fourth-order
(two-photon) interference have been observed in a Young's double-slit
experiment using light generated by spontaneous parametric down-conversion and
a photon-counting intensified CCD camera. Coherence and entanglement underlie
one-and two-photon interference, respectively. As the effective source size is
increased, coherence is diminished while entanglement is enhanced, so that the
visibility of single-photon interference decreases while that of two-photon
interference increases. This is the first experimental demonstration of the
complementarity between single- and two-photon interference (coherence and
entanglement) in the spatial domain.Comment: 21 pages, 7 figure
- …