33 research outputs found
The use of biostimulants in high-density olive growing: Quality and production
[EN] Due to the increase of high-density holdings, especially of olive trees, the nutritional requirements of the plants are higher per unit area, which implies that a greater contribution of fertilizers to the soil is needed. Opting for fertilizers of inorganic origin will produce an increase in the pollution of the soil.
In the face of this possible soil contamination, our aim is to analyze the effect of biostimulants as an alternative to chemical fertilizers, to steadily produce and maintain high quality standards during the life of the crop. Our objective is using more environmentally friendly products in order to satisfy one of the most important demands from both consumers and the authorities.
In this study, we carried out five different treatments in addition to a control treatment with a supply of NPK, from inorganic products, which are used to control fertilization with a solution obtained from seaweed extracts. These treatments were applied in two crop cycles for two of the most important varieties in the current olive tree growing scenario: Arbequina and Koroneiki.
This study was developed in the farm Pozohondo, which is located in a crop zone by the Palancia river (Castellón, Valencia, Spain), in the southeast of the Iberian Peninsula, where the olive trees were established in a high-density system with a planting framework of 4 x 1.5 m. We ensured an exhaustive control of the nutritional needs of the holding by using a fertigation system.
We could notice differences in the productions of each applied treatment, avoiding any possible biases through the additional control of 100 randomly selected olives from each of the samples. There is an improvement in the set of physical characteristics of the olives with the treatment that provides amino acids and extra potassium based on amni acids. We analyzed the quality of the olive oil obtained from the production of each treatment by measuring the fatty acids, tocopherols and polyphenols contents. We also carried out an organoleptic tasting analysis following the rules of the International Olive Committee (IOC).
We observed an improvement with regard to the rest of treatments in the pomological parameters of the olives when applying the potassium and amino acid biostimulant, while the quality of the oils was not affected by the type of fertilization applied in each treatment.This work was funded by Project AICO/2017/047.
Development of methods of quantification of
riparian vegetation biomass for the management
of channels of the Comunitat Valenciana.
Dirección General de Universidades. Generalitat
Valenciana (Spain).Hernández-Hernández, GJ.; Salazar Hernández, DM.; Martínez-Tomé, J.; López-Cortés, I. (2019). The use of biostimulants in high-density olive growing: Quality and production. Asian Journal of Advances in Agricultural Research. 10(4):1-11. https://doi.org/10.9734/AJAAR/2019/v10i430034S11110
Xylella fastidiosa (Wells&Raju). Flavescencia dorada. Enfermedad de Pierce
López- Cortés, I.; Salazar Hernández, DM. (2018). Xylella fastidiosa (Wells&Raju). Flavescencia dorada. Enfermedad de Pierce. La Semana Vitivinicola. (3514):324-328. http://hdl.handle.net/10251/124690S324328351
Xylella fastidiosa: amenaza real para el viñedo
Salazar Hernández, DM.; López- Cortés, I. (2018). Xylella fastidiosa: amenaza real para el viñedo. La Semana Vitivinicola. (3512):164-172. http://hdl.handle.net/10251/124677S164172351
Effect of hot-water treatments above 50 ºC on grapevine viability and survival of Petri disease pathogens
[EN]
Rootstocks (41 B Mgt., 140 Ruggeri, 161-49 Couderc, 1103 Paulsen and 110 Richter) and scion/rootstock combinations (Bobal/1103 P, Merlot/110 R, Tempranillo/110 R and Tempranillo/161-49 C) were hot-water treated (HWTed) at 50, 51, 52. 53, or 54 degrees C for three periods: 30, 45 or 60 min. Four groups of 10 cuttings were treated for each temperature and time, and four additional groups of 10 untreated cuttings were prepared as controls. At the end of the growing season, cutting sprouting and shoot weight were evaluated. In a second experiment, healthy cuttings of '110 R' rootstock were vacuum-inoculated with conidial suspensions (10(6) conidia mL(-1)) of one isolate of either Phaeomoniella chlamydospora or Phaeoacremonium aleophilum. These cuttings were subjected to the treatments indicated above. Four groups of 10 cuttings were treated for each temperature, time and isolate, with their respective controls. Isolations were made immediately after the treatments and at the end of the growing season, when cutting sprouting and shoot weight were evaluated. Results demonstrated that it is possible to hot-water treat grapevine planting material in Spanish nurseries using protocols with temperatures of up to 50 degrees C. HWTs at 53 degrees C are able to eliminate Pa. chlamydospora completely and Strongly reduce the re-isolation of Pm. aleophilum from grapevine wood. These findings will contribute to the development of an effective control for Petri disease in grapevine propagating material in Spanish grapevine nurseries.This research was financially supported by the Projects AGL2006-11884-C04-01 (Ministerio de Educacion y Ciencia, Spain) and TRT2006-00033-00-0 and RTA2007-00023-C04-03 (Programa Nacional de Recursos y Tecnologias Agrarias, Ministerio de Educacion y Ciencia, Spain). We acknowledge A. Crespo, E. H. Albaranez, A. Gimenez-Jaime and T. Zaragoza for technical assistance, and G. Brodie for statistical advice.Gramaje, D.; Armengol Fortí, J.; Salazar Hernández, DM.; López- Cortés, I.; García-Jiménez, J. (2009). Effect of hot-water treatments above 50 ºC on grapevine viability and survival of Petri disease pathogens. Crop Protection. 28(3):280-285. https://doi.org/10.1016/j.cropro.2008.11.00228028528
Changes produced by the application of biostimulants on almond rootstocks properties during the nursery process
[EN] During the last ten years we have assisted to the consolidation of the almond crop that has remarkably increased its cultivation area causing a high demand for both plants and products related to growth stimulation. Accordingly, in the present work we aim to study the changes produced by the contribution of two biostimulants (humic and fulvic acids or aminoacids) on the properties of almond tree rootstocks. This kind of studies are of interest to the nursery cultivation industry where rapid growth of trees and good adaptation to their cultivation environment are required. Plants' radicular and vegetative systems responded differently according to the rootstock selection. The fastest and vigorous vegetative development was observed in GN rootstock whereas GF 677 showed the greatest number of main roots and RP-R of secondary roots. Differences on antioxidant activity and phenol content have also been found between rootstocks. All the tested samples were found to have a high antioxidant power and a high phenol content but GN stood out in this regard over the other rootstocks under study. The efficiency of the biostimulants applied has been verified. Both biostimulants promoted the development of the aerial part of the trees but biostimulant 2 did it to a greater extent. Biostimulant 1 was able to duplicate the number of main roots in RP-R and during the first year of study, biostimulant 2 originated an increase of the weight of the root system by 26.44% for RP-R, 16.93% for GF 677 and 48.00% for GN. In view of these results, synthetic chemical fertilizers can be at least partially replaced by biostimulants.Mondragón-Valero, A.; Malheiro, R.; Salazar Hernández, DM.; Pereira, JA.; López- Cortés, I. (2019). Changes produced by the application of biostimulants on almond rootstocks properties during the nursery process. Advances in Agriculture & Botanics (Online). 11(1):56-71. http://hdl.handle.net/10251/151095S567111
Estudio de la calidad de uvas de la variedad Bobal según el tipo de racimo y la posición de las bayas
López- Cortés, I.; Gandía, I.; Díaz, P.; Salazar Hernández, DM. (2021). Estudio de la calidad de uvas de la variedad Bobal según el tipo de racimo y la posición de las bayas. La Semana Vitivinicola. (3601):1737-1744. http://hdl.handle.net/10251/18972717371744360
Physicochemical composition and antioxidant activity of several pomegranate (Punica granatum L.) cultivars grown in Spain
[EN] Nine pomegranate cultivars grown in Spain were selected, and their physicochemical (total soluble solids, pH, titratable acidity, maturity index, monomeric anthocyanin pigment, flavonoids, hydrolyzable tannins, and vitamin C) and antioxidant properties and polyphenolic composition of the juices were compared. A total of 53 polyphenols were identified, showing cultivars different profiles. Of all nine cultivars, Katirbasi had the highest contents of flavonoids, hydrolyzable tannins and vitamin C, as well as gallic acid and ellagic acid contents, explaining its high total reducing capacity. Principal component analysis allowed Katirbasi to be differentiated clearly from the others. Other cultivars presented also interesting characteristics such as high monomeric anthocyanin pigment content (CG8 cultivar) and interesting antioxidant activity (Wonderful 2 and CG8 cultivars). CG8 was the cultivar with the highest value of cyanidin-3,5-di-O-glucoside. Thus, this study will assist pomegranate producers in choosing the most suitable cultivar according to its ultimate use.Authors are grateful to POCTEP-Programa de Cooperacao Transfronteirica Espanha-Portugal for financial support through the Project "RED/AGROTEC - Experimentation network and transfer for development of agricultural and agro industrial sectors between Spain and Portugal" and CIMO through the Project PEst-OE/AGR/UI0690/2014 and the Foundation for Science and Technology (FCT, Portugal) and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2013).Fernandes, L.; Pereira, JA.; López- Cortés, I.; Salazar Hernández, DM.; González-Álvarez, J.; Ramalhosa, E. (2017). Physicochemical composition and antioxidant activity of several pomegranate (Punica granatum L.) cultivars grown in Spain. European Food Research and Technology. 243(10):1799-1814. https://doi.org/10.1007/s00217-017-2884-4S1799181424310Andreu-Sevilla AJ, Signes-Pastor AJ, Carbonell-Barrachina AA (2009) La granada: producción, composición y propiedades beneficiosas para la salud. In Informe de la Universidad Miguel Hernández, Elche, Elchedigital.es, SpainHolland D, Hatib K, Bar-Ya’akov I (2009) Pomegranate: botany, horticulture, breeding. Hortic Rev 35:127–191Mena P, García-Viguera C, Navarro-Rico J, Moreno DA, Bartual J, Saura D, Martí N (2011) Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J Sci Food Agric 91:1893–1906Akpinar-Bayizit A, Ozcan T, Yilmaz-Ersan L (2012) The therapeutic potential of pomegranate and its products for prevention of cancer. In: Georgakilas AG (ed) Cancer prevention—from mechanisms to translational benefits. InTech, CroatiaDepartment of Agriculture and Food, Western Australia, Growing pomegranates in Western Australia. http://www.agric.wa.gov.au . Accessed 29th Oct 2013Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589Hernández F, Melgarejo P, Tomás-Barberán FA, Artés F (1999) Evolution of juice anthocyanins during ripening of new selected pomegranate (Punica granatum) clones. Eur Food Res Technol 210:39–42Jurenka J (2008) Therapeutic applications of pomegranate (Punica granatum L.): a review. Altern Med Rev 13:128–144Legua P, Melgarejo P, Martínez M, Hernández F (2009) Evolution of anthocyanin content of four pomegranate cultivars (Punica granatum L.) during fruit development. In: Melgarejo P, Martínez-Nicolás JJ, Martínez-Tomé J (eds) Production, processing and marketing of pomegranate in the Mediterranean region: Advances in research and technology, Options Méditerranéennes: Série A. Séminaires Méditerranéens, n. 42: CIHEAM, MadridMelgarejo P, Salazar DM, Artés F (2000) Organic acids and sugars composition of harvested pomegranate fruits. Eur Food Res Technol 211:185–190Nuncio-Jáuregui N, Nowicka P, Munera-Picazo S, Hernández F, Carbonell-Barrachina AA, Wojdyło A (2015) Identification and quantification of major derivatives of ellagic acid and antioxidant properties of thinning and ripe Spanish pomegranates. J Funct Foods 12:354–364Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Sendra E, Sayas-Barberá E, Pérez-Álvarez JA (2011) Antioxidant properties of pomegranate (Punica granatum L.) bagasses obtained as co-product in the juice extraction. Food Res Int 44:1217–1223Aviram M, Dornfeld L, Rosenblat M, Volkova N, Kaplan M, Coleman R, Hayek T, Presser D, Fuhrman B (2000) Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E–deficient mice. Am J Clin Nutr 71:1062–1076Basu A, Penugonda K (2009) Pomegranate juice: a heart-healthy fruit juice. Nutr Rev 67:49–56Albrecht M, Jiang W, Kumi-Diaka J, Lansky EP, Gommersall LM, Patel A, Mansel RE, Neeman I, Geldof AA, Campbell MJ (2004) Pomegranate extracts potently suppress proliferation, xenograft growth, and invasion of human prostate cancer cells. J Med Food 7:274–283Lansky E, Shubert S, Neeman I (2000) Pharmacological and therapeutic properties of pomegranate. In: Melgarejo P, Martínez-Nicolás JJ, Martínez-Tomé J (eds) Production, processing and marketing of pomegranate in the Mediterranean region: Advances in research and technology. Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 42, CIHEAM, MadridLansky EP, Newman RA (2007) Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol 109:177–206Rahimi HR, Arastoo M, Ostad SN (2012) A comprehensive review of Punica granatum (pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. Iran J Pharm Res 11:385–400Tomás-Barberán FA (2010) Granada y salud: aspectos farmacológicos y terapéuticos de la granada. In: Moreno PM, García FH, Murcia PL (eds) Jornadas Nacionales sobre el granado: producción, economía, industrialización, alimentación y salud. SPE3, ValenciaWu D, Ma X, Tian W (2013) Pomegranate husk extract, punicalagin and ellagic acid inhibit fatty acid synthase and adipogenesis of 3T3-L1 adipocyte. J Funct Foods 5:633–641Maestre J, Melgarejo P, Tomás-Barberán FA, García-Viguera C (2000) New food products derived from pomegranate. In: Melgarejo P, Martínez-Nicolás JJ, Martínez-Tomé J (eds) Production, processing and marketing of pomegranate in the Mediterranean region: advances in research and technology. Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 42, CIHEAM, MadridOrdoudi SA, Mantzouridou F, Daftsiou E, Malo C, Hatzidimitriou E, Nenadis N, Tsimidou MZ (2014) Pomegranate juice functional constituents after alcoholic and acetic acid fermentation. J Funct Foods 8:161–168Park JE, Kim JY, Kim J, Kim YJ, Kim MJ, Kwon SW, Kwon O (2014) Pomegranate vinegar beverage reduces visceral fat accumulation in association with AMPK activation in overweight women: a double-blind, randomized, and placebo-controlled trial. J Funct Foods 8:274–281Magerramov MA, Abdulagatov AI, Azizov ND, Abdulagatov IM (2007) Effect of temperature, concentration, and pressure on the viscosity of pomegranate and pear juice concentrates. J Food Process Eng 80:476–489Madrigal-Carballo S, Rodriguez G, Krueger CG, Dreher M, Reed JD (2009) Pomegranate (Punica granatum) supplements: authenticity, antioxidant and polyphenol composition. J Funct Foods 1:324–329Tehranifar A, Zarei M, Nemati Z, Esfandiyari B, Vazifeshenas MR (2010) Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Sci Hort 126:180–185Zarei M, Azizi M, Bashiri-Sadr Z (2010) Studies on physico-chemical properties and bioactive compounds of six pomegranate cultivars grown in Iran. J Food Technol 8:112–117Gözlekçi Ş, Saraçoğlu O, Onursal E, Özgen M (2011) Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharmacogn Mag 7:161–164Ozgen M, Durgaç C, Serçe S, Kaya C (2008) Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chem 111:703–706Gadže J, Voća S, Čmelik Z, Mustać I, Ercisli S, Radunić M (2012) Physico-chemical characteristics of main pomegranate (Punica granatum L.) cultivars grown in Dalmatia region of Croatia. J Appl Bot Food Qual 85:202–206Radunić M, Špika MJ, Ban SG, Gadže J, Lean DM (2012) Chemical composition of pomegranate (Punica granatum L.) cultivars grown in Croatia. In: Melgarejo P, Valero D (eds) II International Symposium on the Pomegranate, Options Méditerranéennes—Series A: Mediterranean Seminars, CIHEAM, ValenciaLegua P, Melgarejo P, Abdelmajid H, Martínez JJ, Martínez R, Ilham H, Hafida H, Hernández F (2012) Total phenols and antioxidant capacity in 10 Moroccan pomegranate varieties. J Food Sci 71:115–120Ferrara G, Giancaspro A, Mazzeo A, Giove SL, Matarrese MAS, Pacucci C, Punzi R, Trani A, Gambacorta G, Blanco A, Gadaleta A (2014) Characterization of pomegranate (Punica granatum L.) genotypes collected in Puglia region Southeastern Italy. Sci Hort 178:70–78Hernández F, Legua P, Martínez M, Melgarejo P (2000) Evolution of sugars and organic acid content in three pomegranate cultivars (Punica granatum L.). In: Melgarejo P, Martínez-Nicolás JJ, Martínez-Tomé J (eds) Production, processing and marketing of pomegranate in the Mediterranean region: Advances in research and technology, Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 42, CIHEAM, MadridLegua P, Melgarejo P, Martínez JJ, Martínez R, Hernández F (2012) Evaluation of Spanish pomegranate juices: organic acids, sugars, and anthocyanins. Int J Food Prop 15:481–494Martínez JJ, Melgarejo P, Hernández F, Salazar DM, Martínez R (2006) Seed characterisation of five new pomegranate (Punica granatum L.) varieties. Sci Hort 110:241–246Vegara S, Martí N, Lorente J, Coll L, Streitenberger S, Valero M, Saura D (2014) Chemical guide parameters for Punica granatum cv. ‘Mollar’ fruit juices processed at industrial scale. Food Chem 147:203–208Council Regulation (EEC) No 2092/91 of 24 June 1991 on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffsMeier U (2001) BBCH monograph—growth stages of mono and dicotyledonous plants. Federal Biological Research Centre for Agriculture and Forestry, BonnMelgarejo P, Salazar D (2003) Treaty of fruit production for arid and semi-arid areas: carob, pomegranate and jujube, vol II. Mundi-Prensa Libras S.A, Madrid (in Spanish)Codex Alimentarius Commission (2012) Report of the 17th session of the Codex Committee on fresh fruits and vegetables. Codex Alimentarius Commission, Mexico CityDafny-Yalin M, Glazer I, Bar-Ilan I, Kerem Z, Holland D, Amir R (2010) Color, sugars and organic acids composition in aril juices and peel homogenates prepared from different pomegranate accessions. J Agric Food Chem 58:4342–4352Shwartz E, Glazer I, Bar-Ya’akov I, Matityahu I, Bar-Ilan I, Holland D, Amir R (2009) Changes in chemical constituents during the maturation and ripening of two commercially important pomegranate accessions. Food Chem 115:965–973Melgarejo P, Calín-Sánchez A, Vázquez-Aráujo L, Hernández F, Martínez JJ, Legua P, Carbonell-Barrachina AA (2011) Volatile composition of pomegranates from 9 Spanish cultivars using headspace solid phase microextraction. J Food Sci 76:114–120Bchir B, Besbes S, Karoui R, Attia H, Paquot M, Blecker C (2012) Effect of air-drying conditions on physico-chemical properties of osmotically pre-treated pomegranate seeds. Food Bioprocess Technol 5:1840–1852Rajasekar D, Akoh CC, Martino KG, MacLean DD (2012) Physico-chemical characteristics of juice extracted by blender and mechanical press from pomegranate cultivars grown in Georgia. Food Chem 133:1383–1393Elfalleh W, Hannachi H, Tlili N, Yahia Y, Nasri N, Ferchichi A (2012) Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J Med Plants Res 6:4724–4730Falcão AP, Chaves ES, Kuskoski EM, Fett R, Falcão LD, Bordignon-Luiz MT (2007) Total polyphenol index, total anthocyanins and antioxidant activity of a model system of grape jelly. Ciênc Tecnol Aliment 27:637–642Delgado T, Malheiro R, Pereira JA, Ramalhosa E (2010) Hazelnut (Corylus avellana L.) kernels as a source of antioxidants and their potential in relation to other nuts. Ind Crops Prod 32:621–626Mena P, Calani L, Dall’Asta C, Galaverna G, García-Viguera C, Bruni R, Crozier A, Del Rio D (2012) Rapid and comprehensive evaluation of (Poly)phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MS. Molecules 17:14821–14840Calani L, Beghè D, Mena P, Del Rio D, Bruni R, Fabbri A, Dall’Asta C, Galaverna G (2013) Ultra-HPLC–MSn (Poly)phenolic profiling and chemometric analysis of juices from ancient Punica granatum L. Cultivars: a nontargeted approach. J Agric Food Chem 61:5600–5609Raduníc M, Špika MJ, Ban SG, Gadze J, Diáz-Pérez JC, MacLean D (2015) Physical and chemical properties of pomegranate fruit accessions from Croatia. Food Chem 177:53–60Ferrara G, Cavoski I, Pacifico A, Tedone L, Mondelli D (2011) Morpho-pomological and chemical characterization of pomegranate (Punica granatum L.) genotypes in Apulia region, Southeastern Italy. Sci Hort 130:599–606Melgarejo P, Sánchez M, Hernández F, Martínez JJ, Amorós A (2012) Parameters for determining the hardness and pleasantness of pomegranates (Punica granatum L.). In: Melgarejo P, Martínez-Nicolás JJ, Martínez-Tomé J (eds) Production, processing and marketing of pomegranate in the Mediterranean region: advances in research and technology, Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 42: CIHEAM, MadridFDA acidified and low-acid canned foods—approximate pH of foods and food products. U.S. Food and Drug Administration www.cfsan.fda.gov . Accessed 29th Oct 2013Melgarejo-Sánchez P, Martínez JJ, Legua P, Martínez R, Hernández F, Melgarejo P (2015) Quality, antioxidant activity and total phenols of six Spanish pomegranates clones. Sci Hort 182:65–72Opara LU, Al-Ani MR, Al-Shuaibi YS (2009) Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food Bioprocess Tech 2:315–321Mars M, Melgarejo P, Amorós A, Martínez R (1997) Pomegranate descriptors. In: Instituto Agronómico Mediterráneo de Zaragoza (IAMZ) (ed) Collaborative Working Group on Underutilized Fruit Crops in the Mediterranean Region, CIHEAM, ZaragozaDe Palma L, Novello V (1995) II melograno: attualitá di una coltura antica. Rivista di Frutticoltura 11:45–49Pavez IAC (2011) Caracterización física, química y sensorial de frutos de granado cv. Wonderful provenientes de tres regiones de Chile, Final course work. Universidad de Chile, Facultad de Ciencias Agronómicas, Santiago do ChileCristofori V, Caruso D, Latini G, Dell’Agli M, Cammilli C, Rugini E, Bignami C, Muleo R (2011) Fruit quality of Italian pomegranate (Punica granatum L.) autochthonous varieties. Eur Food Res Technol 232:397–403Martínez JJ, Hernández F, Abdelmajid H, Legua P, Martínez R, Amine AE, Melgarejo P (2012) Physico-chemical characterization of six pomegranate cultivars from Morocco: processing and fresh market aptitudes. Sci Hort 140:100–106Chace EM, Church CG, Poore HD (1930) The Wonderful variety of pomegranate: composition, commercial maturity, and by-products. In: United States Department of Agriculture (ed), Circular No 98, U.S. Government Printing Office, WashingtonSepúlveda E, Sáenz C, Peña A, Robert P, Bartolomé B, Gómez-Cordovés C (2010) Influence of the genotype on the anthocyanin composition, antioxidant capacity and color of Chilean pomegranate (Punica granatum L.) juices. Chil. J Agric Res 70:50–57Elfalleh W, Yahia Y, Ferchichi A (2012) Main pomegranate phytochemicals and their contribution to the antioxidant potencies of pomegranate juice. In: Melgarejo P, Valero D (eds) II International Symposium on the pomegranate, Options Méditerranéennes—Series A: Mediterranean Seminars. CIHEAM, MadridHirth M, Leiter A, Beck SM, Schuchmann HP (2014) Effect of extrusion cooking process parameters on the retention of bilberry anthocyanins in starch based food. J Food Eng 125:139–146Orak HH, Yagar H, Isbilir SS (2012) Comparison of antioxidant activities of juice, peel, and seed of pomegranate (Punica granatum L.) and inter-relationships with total phenolic, tannin, anthocyanin, and flavonoid contents. Food Sci Biotechnol 21:373–387Paul R, Ghosh U (2012) Effect of thermal treatment on ascorbic acid content of pomegranate juice. IJBT 11:309–313Tezcan F, Gültekin-Özgüven M, Diken T, Özçelik B, Erim FB (2009) Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juices. Food Chem 115:873–877Li X, Wasila H, Liu L, Yuan T, Gao Z, Zhao B, Ahmad I (2015) Physicochemical characteristics, polyphenol compositions and antioxidant potential of pomegranate juices from 10 Chinese cultivars and the environmental factors analysis. Food Chem 175:575–584Bonarska-Kujawa D, Pruchnik H, Kleszczyńska H (2012) Interaction of selected anthocyanins with erythrocytes and liposome membranes. Cell Mol Biol Lett 17:289–30
The development of the radicular and vegetative systems of almond trees with different rootstocks following the application of biostimulants
[EN] Aim of study: Recently, the development of almond crops on a global scale has increased their area under cultivation. The demand for both plants and products that stimulate the growth of almond trees has therefore become increasingly necessary. Accordingly, in this project we have studied the response in the vegetative and root systems of almond trees with different rootstocks to varying inputs of several root stimulants.
Area of study: Valencia (Spain)
Material and methods: Several different organic biostimulants were studied in isolation, i.e. not combined with synthetic chemical fertilizers, in order to ascertain if chemical fertilizers could be at least partially replaced.
Main results: Good results were obtained by applying a biostimulant composed of organic matter rich in saccharides and carboxylates. Using an approach that enabled a distinguishing between them, plant radicular systems were shown to respond differently according to the biostimulant applied and the rootstock tested. The best results were obtained with a biostimulant composed of organic matter from corn hydrolysis and containing free amino acids and extracts from algae, as well as 0.07% zeaxanthins.
Research highlights: Although biostimulants are promoters of young almond tree growth, they should be applied to only partially replace chemical fertilizers. The present paper shows the importance of using an organic-origin biostimulant, as a complement to chemical nutritionMondragón-Valero, A.; Malheiro, R.; Salazar Hernández, DM.; Martinez-Tome, J.; Pereira, JA.; López- Cortés, I. (2020). The development of the radicular and vegetative systems of almond trees with different rootstocks following the application of biostimulants. Spanish Journal of Agricultural Research (Online). 18(4):1-11. https://doi.org/10.5424/sjar/2020184-14787S111184Apone F, Tito A, Carola A, Arciello S, Tortora A, Filippini L, 2010. A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells. J Biotech 145: 367-376.Basak A, 2008. Effect of preharvest treatment with seaweed products, Kelpak® and Goëmar BM 86®, on fruit quality in apple. Inter J Fruit Sci 8: 1-14.Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B, 2015. Seaweed extracts as biostimulants in horticulture. Sci Hortic 196: 39-48.Bernhard R, Grasselly C, 1981. Les pêchers x amandiers. Arb Fruit 328: 37-42.Bi G, Scagel C, Cheng L, Dong S, Fuchigami L, 2003. Spring growth of almond nursery trees depends upon nitrogen from both plant reserves and spring fertilizer application. J Hortic Sci Biotech 78: 853-858.Burns AM, Zitt MA, Rowe CC, Langkamp-Henken B, Mai V, Nieves C, et al., 2016. Diet quality improves for parents and children when almonds are incorporated into their daily diet: a randomized, crossover study. Nutr Res 36: 80-89.Bussi C, Huguet J, Besset J, Girard T, 1995. Rootstock effects on the growth and fruit yield of peach. Eur J Agron 4: 387-393.Chen SK, Edwards CA, Subler S, 2003. The influence of two agricultural biostimulants on nitrogen transformations, microbial activity, and plant growth in soil microcosms. Soil Biol Biochem 35: 9-19.Chouliaras V, Tasioula M, Chatzissavvidis C, Therios I, Tsabolatidou E, 2009. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki. J Sci Food Agric 89: 984-988.Deliopoulos T, Kettlewell P, Hare M, 2010. Fungal disease suppression by inorganic salts. A review. Crop Prot 29: 1059-1075.Enz M, Dachler CH, 1997. Compendium of growth stage identification keys for mono- and dicotyledonous plants. Extended BBCH scale. A joint publication of BBA, BSA, IGZ, IVA, AgrEvo, BASF, Bayer, Novartis. 94 pp.Ertani A, Cavani L, Pizzeghello D, Brandellero E, Altissimo A, Ciavatta C, Nardi S, 2009. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J Plant Nutr Soil Sci 172: 237-244.Espada J, Romero J, Cmuñas F, Alonso J, 2013. Nuevos patrones para el melocotonero: mejora de la eficiencia y calidad del fruto. Gobierno de Aragón, Zaragoza, Spain.European Biostimulants Industry Council, 2018. Economic overview of biostimulants sector in Europe. http://www.biostimulants.eu/.Felipe A, 2009. Felinem, Garnem and Monegro almond x peach hybrid rootstocks. HortScience 44: 196-197.Forcada C, Gogorcena Y, Moreno M, 2012. Agronomical and fruit quality traits of two peach cultivars on peach-almond hybrid rootstocks growing on Mediterranean conditions. Sci Hortic 140: 157-163.Gómez-Aparisi J, Carrera M, Felipe A, Socias I Company R, 2001. Garnem, Monegro y Felinem: Nuevos patrones híbridos almendro x melocotonero, resistentes a nematodos y de hoja roja para frutales de hueso. Inf Téc Econ Agrar 97: 282-288.Goss M, Miller M, Bailey L, Grant C, 1993. Root growth and distribution in relation to nutrient availability and uptake. Eur J Agron 2: 57-67.INC, 2019. Global statistical review 2017-2018. International Nut and Dried Fruit Council, Reus, Spain.Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, et al., 2009. Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Reg 28: 386-399.Lopus SE, Santibañez MP, Beede RH, Duncan RA, Edstrom J, Niederholzer FJA, et al., 2010. Survey examines the adoption of perceived best management practices for almond nutrition. Calif Agric 64: 149-154.Mondragón-Valero A, Lopéz-Cortés I, Salazar DM, Córdova PF, 2017. Physical mechanisms produced in the development of nursery almond trees (Prunus dulcis Miller) as a response to the plant adaptation to different substrates. Rhizosphere 3: 44-49.Moreno M, Gogorcena Y, Pinochet J, 2008. Mejora y selección de patrones de prunus tolerantes a estreses abióticos. In: La adaptación al ambiente y los estreses abióticos en la mejora vegetal, pp. 451-475. Junta de Andalucía, Dirección General de Planificación y Análisis de Mercados, Servicio de Publicaciones y Divulgación, Sevilla.Muhammad S, Luedeling E, Brown P, 2009. A nutrient budget approach to nutrient management in almond. XVI Proc Int Plant Nutr Col, California (USA), pp: 1-9.Nardi S, Pizzeghello D, Schiavon M, Ertani A, 2016. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci Agric 73: 18-23.Olivares FL, Busato JG, Paula AM, Lima LS, Aguiar NO, Canellas LP, 2017. Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chem Biol Tech Agric 4: 30.Pinochet J, 2010. 'Replantpac' (Rootpac R), a plum-almond hybrid rootstock for replant situations. HortScience 45: 299-301.Pinochet J, Bordas M, Torrents J, 2011. ROOTPAC R: un nuevo portainjerto de Prunus para situaciones de replante. Revista de Fruticultura 15: 4-10.Pizzeghello D, Francioso O, Ertani A, Muscolo A, Nardi S, 2013. Isopentenyladenosine and cytokinin-like activity of different humic substances. J Geochem Expl 129: 70-75.Rayorath P, Jithesh M. Farid A, Khan W, Palanisamy R, 2008. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J Appl Phycol 20: 423-429.Rouphael Y, Cardarelli M, Bonini P, Colla G, 2017. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front Plant Sci 8: 131.Salazar D, Melgarejo P, 2002. El cultivo del almendro. Mundi-Prensa, Madrid, Spain. 307 pp.Scaglia B, Pognani M, Adani F, 2017. The anaerobic digestion process capability to produce biostimulant: the case study of the dissolved organic matter (DOM) vs. auxin-like property. Sci Total Environ 589: 36-45.Sotomayor C, Castro J, Bustos E, 2008. Nuevos portainjertos para Chile. Rev Agron For UC 35: 22-26.Vargas F, Romero M, Altea N, 1985. Porte-greffe d'amandier: Aspects importants des programmes de Centre Agropecuari Mas Bové. GREMPA, colloque 1985. CIHEAM, Paris. Opt Mediterr Sér Etudes 1985-I: 61-68. http://om.ciheam.org/om/pdf/s09/CI010822.pdfVernieri P, Borghesi E, Ferrante A, Magnani G, 2005. Application of biostimulants in floating system for improving rocket quality. J Food Agric Environ 3: 86-88.Wells C, Labranche A, Mccarty L, Skipper H, 2003. Biostimulants encourage strong root growth. Turfgrass Trend 59: 56-59.Williams L, Smith R, 1991. The effect of rootstocck on the partitioning of dry weight, nitrogen and potassium and root distribution of cabernet sauvignon grapevines. Am J Enol Vitic 42: 118-112.Zhang X, Ervin E, 2004. Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. J Appl Phycol 44: 1737-1745
Aprendizaje mediante el ejercicio práctico de actividades en asignaturas de ciencias agrarias
[ES] En este trabajo se presenta la experiencia de la aplicación de una
metodología de enseñanza-aprendizaje basada en prácticas en asignaturas
de temática agrícola y agroindustrial. Ésta consistió en dedicar un 70% de
las horas a prácticas de campo y laboratorio, y un 30% de contenidos
teóricos. Los contenidos teóricos fueron dirigidos a lecturas de bibliografía
que después se exponen en foros antes de la aplicación de la práctica. Las
prácticas se centraron en experimentar procesos propios de cada cultivo,
tales como diferenciación de especies, técnicas de siembra y plantación,
reconocimiento de plagas y enfermedades, técnicas de poda, realización de
injertos etc. En las asignaturas de agroindustria, tales como
aprovechamiento energético de la biomasa, las practicas se orientaron a
ejercicios de laboratorio para calcular propiedades de materiales
biocombustibles, tales como el poder calorífico, composición de CHN,
cenizas etc. La evaluación se realiza de forma tradicional, mediante
exámenes parciales y final. También se evalúan las memorias de prácticas.
Los resultados obtenidos durante dos años mostraron un aumento de la
puntuación de la valoración de la asignatura en las encuestas
institucionales. El nivel de aprobados por curso aumentó alrededor de un
10%. Además se realizaron entrevistas para indagar en los aspectos
relevantes de la técnica, realizando los alumnos análisis DAFO
(Debilidades, Amenazas, Fortalezas, Oportunidades). Entre las debilidades
más relevantes se muestra la exigencia de ir a clase para seguir bien el
método diseñado de aprendizaje.Velázquez-Martí, B.; López Cortés, I.; Vinueza-Villares, V.; Salazar Hernández, DM. (2021). Aprendizaje mediante el ejercicio práctico de actividades en asignaturas de ciencias agrarias. En Proceedings INNODOCT/20. International Conference on Innovation, Documentation and Education. Editorial Universitat Politècnica de València. 615-622. https://doi.org/10.4995/INN2020.2020.11882OCS61562
Comparación del cultivo tradicional y ecológico de la vid en la D.O.P. Cariñena
Mompeón, M.; Fenollosa Ribera, ML.; López- Cortés, I.; Salazar Hernández, DM. (2018). Comparación del cultivo tradicional y ecológico de la vid en la D.O.P. Cariñena. La Semana Vitivinicola. (3532):2068-2074. http://hdl.handle.net/10251/124679S20682074353